Novel Powering Schemes for the CMS Tracker at the Super-LHC

Katja Klein, HGF Detector Fellow, RWTH Aachen University

with L. Feld, R. Jussen, W. Karpinski, J. Merz , J. Sammet

The power distribution problem of the CMS tracker at the Super-LHC

The CMS Tracker and its power distribution

Pixels: 1m² area, 66M channels, 3.6kW Brips: 200m² area, 9.3M channels, 35kW
Power loss in cables ca. 35kW</

	LHC	SLHC Phase-1	SLHC Phase-2
Luminosity	10 ³⁴ cm ⁻² s ⁻¹	2 x 10 ³⁴ cm ⁻² s ⁻¹	10 ³⁵ cm ⁻² s ⁻¹
Particles in tracker	~ 1 000	~ 2 000	~ 15 000 – 20 000 depending on scenario
Start-up	$2009 = t_0$	t _o + 5 years	t ₀ + 10 years

CMS Tracker power at the Super-LHC (SLHC)

- Higher granularity to keep occupancy at $\sim 1\% \Rightarrow$ shorter strips, more channels
- Track information must be used in the level-1 trigger to preserve trigger rate ⇒ pixellated layers with complex, fast digital electronics
- Smaller feature size front-end electronics: 250nm \rightarrow 130nm or below
- \Rightarrow saves power, but leads to larger currents for same power consumption
- Improvement of detector performance by decreasing tracker material budget
- Services including power cables to the tracker cannot be accessed

A new, different Tracker will be built. Its power consumption might be high.

A possible solution: DC-DC conversion

RNTHAACHE

Helmholtz Alliance

Parallel powering with DC-DC converters:

adopted by the CMS tracker as baseline in January 2009

DC-DC converters are currently foreseen for the pixel detector at SLHC phase-1, and the outer tracker at SLHC phase-2.

The DC-DC buck converter

- The simplest inductor-based step-down converter \Rightarrow few components \Rightarrow low mass
- Preferred because of its high efficiency (70-80%), the possibility to drive large output currents (several Amperes), and to provide high conversion ratios (r ~ 10)

Custom radiation-hard ASIC in non-standard technology is being developed by CERN-PH-ESE group
Collaboration with CERN group since 2008, prototype chips already received and tested

Aachen DC-DC buck converter development

Development of converters with commercial, non radiation-hard buck converter ASICs
Focus on low mass, low noise converter design, and study noise behaviour and integration aspects

Tracker Material Budget with DC-DC conversion

- Simulation of Tracker MB within CMS software (CMSSW), based on GEANT4
 One AC2-StandardC converter simulated per strip module, located on the front-end hybrid
 Assumptions: conversion ratio = 8, efficiency = 80%
- Copper savings in cables and motherboards evaluated based on tolerable voltage drop & power losses

Measurement of converter noise spectra

System test measurements

New readout ASICs and modules prototypes not yet available

• A lot can already be learned from the operation of current tracker hardware with DC-DC converters

-128 channels - per channel: pre-amplifier, CR-RC shaper, pipeline - shaping time τ = 50ns - 1.25V & 2.50V supply voltages - I₂₅₀ = 0.12A, I₁₂₅ = 0.06A

The APV25 readout chip

- 250nm CMOS technology

analogue readout

Two converters

equired per module

Next steps

Continue studies of noise coupling mechanisms
Development of DC-DC converters using radiation-hard ASICs
System tests with SLHC readout chips and prototype modules
Converter integration aspects: cooling, space, shielding etc.

