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Parameter estimation
Olaf Behnke and Lorenzo Moneta

Exercise 2.1: E�ciencies and averages

a) Determine the total decay rate R. For this, correct the decay rates N1, N2 of the
two counters for their respective e�ciencies ✏1 and ✏2 and then add the corrected
numbers:

R =

N1

✏1
+

N2

✏2
=

99

0.99
+

4

0.04
= 100 + 100 = 200 .

For the uncertainty of this estimate find from error propagation

�R =

s✓
�N1

✏1

◆2

+

✓
�N2

✏2

◆2

=

p
(9/0.99)2 + 50

2
= 50.8 .

The uncertainty is dominated by the single measurement with the largest uncer-
tainty (in this case the second measurement).

b) Here we have two independent measurements of the total rate R:
Measurement 1:

R1 =

N1

✏1 · ✏geom1
= 200± 18 .

Here ✏geom1 denotes the geometric acceptance of the first detector which is
assumed to be 0.5.

Measurement 2:

R2 =

N2

✏2 · ✏geom2
= 200± 100 .

Denoting the uncertainties of the two rate measurements as �1 and �2, determine
the weighted average ˆR and its uncertainty �

R̂
(see equations (2.18) and (2.19) in

the book):

ˆR =

1

1
�2
1
+

1
�2
2

·
✓
R1

�2
1

+

R2

�2
2

◆
=

1

1
182

+

1
1002

·
⇣
200

18

2
+

200

100

2

⌘
= 200 ;
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�
R̂

=

 
1

1
�2
1
+

1
�2
2

!�0.5

=

 
1

1
182

+

1
1002

!�0.5

= 17.7 .

In this case, the uncertainty is smaller than for the individual measurements, and it
is dominated by the single measurement with the smallest uncertainty.

————————————————————————————————-

Exercise 2.2: Weighted average and �2

First note that the weighted average ˆ✓ and its variance �2
✓̂

are given by (see equations
(2.18) and (2.19) in the book)

ˆ✓ =

1

1
�2
1
+

1
�2
2

·
✓
y1
�2
1

+

y2
�2
2

◆
=

g1y1 + g2y2
g1 + g2

, with gi := 1/�2
i for i = 1, 2 , and

�2
✓̂
=

1

1
�2
1
+

1
�2
2

=

1

g1 + g2
.

Then rewrite �2 as

�2
=

(y1 � ✓)2

�2
1

+

(y2 � ✓)2

�2
2

=

(y1 � ˆ✓ � (✓ � ˆ✓))2

�2
1

+

(y2 � ˆ✓ � (✓ � ˆ✓))2

�2
2

=

(y1 � ˆ✓)2

�2
1

+

(y2 � ˆ✓)2

�2
2

� 2(✓ � ˆ✓) ·

(y1 � ˆ✓)

�2
1

+

(y2 � ˆ✓)

�2
2

�

| {z }
=0

+(✓ � ˆ✓)2 ·

1

�2
1

+

1

�2
2

�

| {z }
=1/�2

✓̂

=

(y1 � ˆ✓)2

�2
1

+

(y2 � ˆ✓)2

�2
2

+

(✓ � ˆ✓)2

�2
✓̂

.

The last term is already one of the two �2 terms to be shown in the problem. The
first two terms define the minimum of the �2. They can be rewritten as

�2
min =

(y1 � ˆ✓)2

�2
1

+

(y2 � ˆ✓)2

�2
2

= g1 ·
✓
y1 � g1y1 + g2y2

g1 + g2

◆2

+ g2 ·
✓
y2 � g1y1 + g2y2

g1 + g2

◆2

= g1 ·
✓
g2y1 � g2y2

g1 + g2

◆2

+ g2 ·
✓
g1y2 � g1y1

g1 + g2

◆2

=

g1g
2
2

(g1 + g2)2
· (y1 � y2)

2
+

g2g
2
1

(g1 + g2)2
· (y1 � y2)

2

=

g1g2(g1 + g2)

(g1 + g2)2
· (y1 � y2)

2
=

g1 · g2
g1 + g2

· (y1 � y2)
2

=

1

1/g1 + 1/g2
· (y1 � y2)

2
=

(y1 � y2)
2

�2
1 + �2

2

,

providing the other �2 term stated in the problem.
————————————————————————————————-
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Exercise 2.3: Unbinned fits 1
The properly normalised probability density function f in this problem is f(x;�) =
0.5(1+�x)with x = cos ✓. In the top left of figure 2.1, the data points (the ten spikes)
and the fitted curve (dashed line) are shown. The top right shows the log-likelihood
curve based on the likelihood

L =

10Y

i=1

f(xi;�) =

10Y

i=1

0.5(1 + �xi) ,

with xi denoting the individual data values.

a) The � point with the maximum lnL defines the maximum-likelihood estimate ˆ�.
Read o� from figure 2.1: ˆ� = 0.3. The two � points where lnL drops by 0.5 from
the maximum value define a 68% confidence interval for �; find (see figure 2.1)
the interval: [�0.8, 1.3]. Express the result in the short-hand notation of equation
(2.26) in the book:

� = �0.3+1.0
�1.1 .

b) With the small statistics at hand it is not easy to judge on the compatibility of theory
and data. It looks as if the theory is compatible, although other models, e.g. with a
distribution ⇠ 1� (cos ✓)2 , would also fit the data.

c) The bottom left of figure 2.1 shows the data points (the ten spikes) and in the bot-
tom right the log-likelihood curve. The fact that all data points lie in the region of
positive cos ✓ values leads to a problem: The log-likelihood function rises continu-
ously with increasing �, so that no maximum can be found at finite � values! The
theory does not look consistent with the data. If � is positive and large (however, �
is bounded to not be larger than unity in order to have a positive probability dens-
ity for all values of cos ✓), we would expect the data points to be clustered towards
cos ✓ = 1 and not to be uniformly distributed. If � is positive but small compared
to unity, we would expect some values to lie on the negative side. So the experi-
menter or fitter should also question the data and check if everything is correct or
if perhaps a bug is present.

————————————————————————————————-

Exercise 2.4: Unbinned fits 2

a) The log-likelihood function is given by

lnL(�) =

NX

i=1

ln(�e��ti) = N ln(�)� �T, with T =

NX

i=1

ti .

The maximum-likelihood estimate ˆ� is the point at which lnL is maximal; find it
by:

@ lnL

@�
=

N

�
� T = 0 ) ˆ� =

N

T
.
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Figure 2.1 The solution of exercise 2.3. For details see the text.

Estimate the error of ˆ� (see equations (2.22) and (2.23) in the book):

�̂
�̂
=


�@2 lnL(�)

@�2

����
�=�̂

��0.5

=


N
ˆ�2

��0.5

=

ˆ�p
N

.

This estimate is based on approximating the likelihood function around its max-
imum by a Gaussian. This works only well for reasonably large N , e.g. N = 1 is
too small, but N = 20 is already fine unless a very high precision is required. For
small N follow the prescription (see equation (2.24) in the book and the discussion
thereafter) and estimate a 68% confidence interval [�low,�up] for � by finding the
two points �low and �up where lnL drops by 0.5 from its maximum value at ˆ�.
Find these points e.g. by scanning or plotting lnL as a function of � (for an example
see the solution of exercise 2.7).

b) The detector e�ciency is e�⌫t. Write the proper probability density function f of
the decays as

f(t) = �0e��
0t with �0 = �+ ⌫ .

Determine results for �0 exactly in the same way as in task a) for � and obtain at
the end � = �0 � ⌫. Since ⌫ is fixed, the uncertainty of ˆ� is the same as the one of
ˆ�0.

c) Obtain the probability density of the observed decays from a convolution of the
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theoretical rate with the resolution function:

f(t) =

Z 1

0

dt0 �e��t
0

1p
2⇡�

e�
(t�t

0)2

2�2

=

1p
2⇡�

�e
�

2
�

2

2 ��t
Z 1

0

dt0 e� 1
2�2

⇣
t0+(�� t

�

2 )�2
⌘2

=

1p
2⇡�

�e
�

2
�

2

2 ��t
Z 1

�t+��2

dt0 e�
t

02
2�2 .

According to equations (2.3) and (2.4) in the book, the minimal standard deviation
of the estimated parameter ˆ� is given by

�
�̂
� I(�)�0.5 , with the information I(�) = N

Z 1

�1

1

f

✓
@f

@�

◆2

dt .

Calculate the derivative of the probability density function with respect to �:

@f

@�
=

f

�
+ (��2 � t)f � 1p

2⇡
��e�

t

2

2�2 .

Determine numerically

�
�̂
=

"Z 1

0

1

f

✓
@f

@�

◆2

dt

#�0.5

/
p
N .

The solution is displayed in figure 2.2, for a fixed value � = 1 and setting N = 1.
For � ⌧ 1 find �

�̂
= 1, corresponding to task a). For increasing � the uncer-

tainty �
�̂

is growing, reflecting the loss of information due to the detector resolu-
tion (smearing of events). For � > 2 the uncertainty �

�̂
slowly approaches �. This

is clear since the observed decay-rate distribution gradually evolves into a simple
Gaussian with mean value � and width �.

————————————————————————————————-

Exercise 2.5: Correlated fit parameters
We follow here the Bayesian reasoning and interprete the likelihood function as a two-
dimensional Gaussian probability density of the parameter vector x. First calculate
the inverse of the covariance matrix C and its determinant:

C

�1
=

1

1� ⇢2

0

@
1
�2
1

�⇢
�1�2

�⇢
�1�2

1
�2
2

1

A , det(C�1
) =

1

�2
1�

2
2(1� ⇢2)

.

In the following it is very convenient to work with reduced variables:

x1 � �1
�1

! x and x2 � �2
�2

! y .
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Figure 2.2 The solution of exercise 2.4. For details see the text.

The results obtained from here on can be easily transferred back at the end to the
original variables. Determine the probability density f(x, y) ⌘ G(x):

f(x, y) =
1

2⇡
p

(1� ⇢2)
exp

 �1

2(1� ⇢2)
(x2 � 2⇢xy + y2)

�
.

For the first task calculate the probability density for xwhile y can have any value. For
this integrate (marginalise) the density over y using the following integral formula:

I =

Z 1

�1
exp

✓�y2

2a2
+ by

◆
dy =

p
2⇡a · exp

✓
a2b2

2

◆
.

The relations to our variables are

a2 = 1� ⇢2, b =
⇢x

1� ⇢2
) a2b2

2

=

⇢2x2

2(1� ⇢2)
.

Using I, calculate the marginal probability density of x (denoted as ˜f(x)):

˜f(x) =

Z 1

�1
f(x, y) dy =

1p
2⇡

exp

 �x2

2(1� ⇢2)
+

⇢2x2

2(1� ⇢2)

�

=

1p
2⇡

exp

�x2

2

�
.

This is a unit Gaussian distribution in x; thus the original variable x1 follows a Gaus-
sian distribution with expectation value �1 and standard deviation �1.
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For the second task x2 is fixed to the value �02. This corresponds to fixing the trans-
formed variable y to y0 = �0

2��2

�2
. Now renormalise the probability density for x. For

this integrate f over x, keeping y fixed to y0. This corresponds exactly to the mar-
ginalisation step in the first task (but swapping x and y). Hence the renormalisation
factor is
p
2⇡ exp


y02

2

�
,

and we find for the renormalised probability density of x:

f(x|y=y0
) =

1p
2⇡(1� ⇢2)

exp

 �1

2(1� ⇢2)
(x� ⇢y0)2

�
.

This is a Gaussian distribution with expectation value ⇢y0 and standard deviationp
1� ⇢2. Thus the original variable x1 follows a Gaussian distribution with expect-

ation value �1+ �1
�2

⇢(�02��2) and standard deviation �1
p

1� ⇢2. This demonstrates
the role of the correlation coe�cient ⇢: if x2 is shifted (e.g. by an external constraint
from another measurement) by one standard deviation, that is �02��2 = �2, then the
expectation value of x1 is shifted by ⇢ times its own standard deviation �1. Further-
more the fixing of x2 reduces the uncertainty of x1 by a factor

p
1� ⇢2.

————————————————————————————————-

Exercise 2.6: Evaluation of the information
According to equations (2.3) and (2.4) in the book, the minimal standard deviation
of the estimated parameter ˆ� is given by

�
�̂
� I(�)�0.5 , with the information I(�) = n

Z 1

�1

1

f

✓
@f

@�

◆2

dt .

Here n denotes the number of recorded decays, and the probability density function
f is proportional to the rate NB0!J/ K0

S

(t) or to NB̄0!J/ K0
S

(t).
Let us generalise the problem and introduce time-dependent rates N and ¯N with

arbitrary oscillation frequency !:

B0
: N / e�t

[1 + � sin (!t)] , (2.1)
¯B0

:

¯N / e�t
[1� � sin (!t)] . (2.2)

The integrals of the rates are given by:
Z 1

0

N(t)dt = 1 + �

Z 1

0

1

2i

h
e�t(1�i!) � e�t(1+i!)dt

i

= 1 +

�!

1 + !2

= 1 + �� with � :=

!

1 + !2
,

Z 1

0

¯N(t)dt = 1� �� .
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Thus obtain properly normalised probability density functions:

N =

1

1 + ��
e�t

[1 + �sin(!t)] ,

¯N =

1

1� ��
e�t

[1� �sin(!t)] .

Determine the derivatives of these functions with respect to �:

@N

@�
=

��e�t

(1 + ��)2
[1 + �sin(!t)] +

e�t

1 + ��
sin(!t)

=

e�t

(1 + ��)2
[sin(!t)� �] ,

@ ¯N

@�
=

�e�t

(1� ��)2
[sin(!t)� �] .

Therefore find:

1

N

✓
@N

@�

◆2

=

e�t

(1 + ��)2
[sin(!t)� �]2

(1 + �sin(!t)
,

1

¯N

✓
@ ¯N

@�

◆2

=

e�t

(1� ��)2
[sin(!t)� �]2

(1� �sin(!t)
.

The estimate of the uncertainty on � is based on

�
�̂
=

"Z 1

0

1

N

✓
@N

@�

◆2

dt

#�0.5

/
p
n .

Performing the integration numerically, obtain for n = 500 � = 0.3 and ! = 0.7 the
solutions for tasks a) and b):

�
�̂

= 0.165 for B0,

�
�̂

= 0.099 for ¯B0.

The sensitivity is larger for ¯B0 because of the minus sign in the rate (2.2); this causes
the rate to be closer to zero at the first maximum of sin(!t), compared to the B0

case, and a small change of � can lead to a rather large relative rate variation.
If we produce both B0 and ¯B0 and observe their time-dependent decays, we have

not only to integrate the rates over the time but also to sum up over both processes
to obtain properly normalised PDFs. Let us assume that both mesons have been
produced by strong interactions with the same probability N(t = 0) =

¯N(t = 0).
Using (2.2) and (2.2), this leads to the following normalisation condition:
Z 1

0

(N(t) + ¯N(t))dt = 2 ) total normalisation factor = 1/2 .
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Using the normalised rates gives:

1
N

�
@N
@�

�2

1
N̄

⇣
@N̄
@�

⌘2

9
=

; =

e�t
(sin(!t))2

1± �sin(!t)
.

Finally obtain the solution for task c) by numerical integration:

�
�̂
=

"Z 1

0

1

N

✓
@N

@�

◆2

dt+
Z 1

0

1

¯N

✓
@ ¯N

@�

◆2

dt

#�0.5

/
p
500 = 0.075 .

The improved sensitivity is caused by the anticorrelation of the two rates: When �

changes, one rate increases, but the other decreases. This is similar to the fit of the
slope of a straight line (assuming the constant term to be fixed): When we have one
measurement point to the left and another one to the right of the coordinate origin
(with the B0 rates corresponding to one point and the ¯B0 to the other point), this
increases the lever arm of the measurement compared to the case of only one of the
two measurements available.

————————————————————————————————-

Exercise 2.7: Unbinned maximum-likelihood versus least-squares estimate

a) The log-likelihood function is given by

lnL(�) =

NX

i=1

ln(�e��ti) = N ln(�)� �T with T =

NX

i=1

ti .

Using the solution of exercise 2.4, determine the maximum-likelihood estimate

ˆ� =

N

T
= 40/270.4 = 0.148 .

Please note that for simplicity we have dropped all physical units, but since the
decay times are given in minutes, the proper unit for ˆ� is min�1.
Estimate the error on ˆ� by approximating the likelihood function around the max-
imum by a Gaussian (see again solution of exercise 2.4):

�̂
�̂
=

ˆ�

N
= 0.023 .

Figure 2.3 shows, in the top, the log-likelihood function as a function of � in a
wider (left) and in a narrow (right) region around the maximum of lnL. In the
wider region one can see an asymmetric curve around the maximum which devi-
ates strongly from a parabola — the Gaussian approximation fails. However, in
the region around the maximum where lnL drops by about one unit (right plot),
the Gaussian approximation seems to be ok. In fact the positive and negative un-
certainties (see equation (2.24) in the book), which are defined as the distances
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from ˆ� to the two � points at which lnL drops by 0.5, di�er only marginally from
the (above) value of 0.023 (0.024 and 0.022, respectively). In summary the result
based on the maximum-likelihood estimate is

� = 0.148+0.024
�0.022 .

Figure 2.3 shows, in the bottom, a binned comparison of the observed data and
the theoretical expectation using the fitted value ˆ� = 0.148. The left (right) panel
shows the distributions in linear (logarithmic) vertical scale. The theoretical ex-
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Figure 2.3 The solution of exercise 2.7 using the maximum-likelihood estimate. For details
see the text.

pectation value ⌫ in a bin is obtained from the integral

⌫ = N

Z t
up

t
low

�e��tdt = N(e�t
low � e�t

up

) .

Here tlow and tup denote the lower and upper decay-time bin limits. The binning
is chosen (arbitrarily) as = 0.15�1 so it close to ˆ��1. One therefore expects a drop
of the number of events from one bin to the next by a factor ⇠ e�1. For a correct
hypothesis the data are expected to fluctuate around the estimated theoretical ex-
pectation values approximately according to Poisson statistics. This seems to be
the case for most of the bins; the most significant deviation is in the third bin where
3.4 entries are expected and none is recorded — the probability for such a Poisson
fluctuation is about 3%, which is not significant. In summary the hypothesis of an
exponential decay seems to be compatible with the data.
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b) For the least-squares method we can use either the �2 defined by Pearson (see
equation (2.90) in the book) or the one defined by Neyman (see equation (2.91) in
the book). Choose the popular Neyman variant,

�2
=

BX

i=1

[ni � ⌫i(�)]
2

ni
,

where B denotes the number of bins and ni and ⌫i the observed and expected
number of decays in bin i. Figure 2.4 shows in the top the �2 function as a function
of � in a wider (left) and in a narrow (right) region around the minimum of �2. The
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Figure 2.4 The solution of exercise 2.7 using the minimum �2 estimate. For details see
the text.

minimal �2 value of �2
min = 1.44 is obtained at ˆ� = 0.172 . This � value together

with the two points where �2 increases by one unit defines the estimator value and
its (estimated) uncertainty:

� = 0.172+0.045
�0.038 .

The result is consistent with the one obtained in task a), however the �2 method
yields a larger uncertainty on ˆ�. One reason for this is the information loss due
to the binning; another is the restriction of the total fit interval to times smaller
than 15, discarding three decays at larger decay times. The �2

min/ndf value of
1.44/2 is indicating a good agreement of the exponential-decay hypothesis with the
data. This is also demonstrated by the good agreement of the data and fit histogram
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shown in the lower plots of figure 2.4 in linear (left) and logarithmic (right) vertical
scale.

————————————————————————————————-

Exercise 2.8: Best-fit parameters
The least-squares fits using polynomials of orders zero to three are shown in fig-
ure 2.5. The following information is also provided in the plots:

• the �2/ndf , denoting the minimum �2 value per number of degrees of freedom,
obtained for the fitted parameter values;

• the fitted parameter values and their errors. The parameters A0, A1, A2 and A3
denote the coe�cients of the terms of the polynomial of degres zero to three.

a) The fit with a constant function y = a describes the data poorly. This is also
indicated by the �2/ndf value of 90.8/5.

b) The fit with a straight line ax + b describes the data much better. However, the
�2/ndf value of 12.8/4 is still rather large. The probability to find for repeated
experiments an equally large or larger �2 value is only ⇠ 1.3%.

c) The fit with a parabola ax2 + bx + c describes the data somewhat better than the
fit with the straight line. This is indicated by the �2/ndf of 7.9/3. The probability
to find for repeated experiments a larger �2 value is ⇠ 5%, which is acceptable.

d) The fit with a cubic polynomial ax3 + bx2 + cx + d does not really improve the
description compared to the parabola. The �2 drops only by about one unit, but
this is what is expected for an additional parameter which is not really needed (the
parameter only helps to better describe the local fluctuations of the data).
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Figure 2.5 The solution of exercise 2.8. Shown are the input data points (triangles with
error bars) and the fitted polynomials of degrees zero to three (solid curves). For further
details see the text.


