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How to deal with systematic uncertainties
Rainer Wanke

A hypothetical B-meson decay

a) The sum of events in the signal sidebands is

Nsideband = N 4.68� 4.98 GeV
sideband +N 5.58� 5.98 GeV

sideband = 1417 + 2846 = 4263 (8.1)

With this and assuming a linear behaviour of the background, the expected number
of background events in the signal region from 5.13 GeV to 5.33 GeV is

Nbkg = Nsideband · width of signal region
width of sideband regions = 4263 · 0.3 GeV

2 · 0.3 GeV = 2131.5±32.6, (8.2)

where the error on the estimate comes from the sideband statistics (it is 1
2

p
Nbkg).

The background estimate in the signal region as extrapolated from the sidebands
is shown in figure 8.1. Judging by eye, it seems that the background is slightly un-
derestimated — possibly indicating a non-linear behaviour, which should be taken
into account by a systematic uncertainty (see below)1).
The only possibility of a systematic uncertainty on the background estimate is a
possible non-linear behaviour of the background. Two possibilities should always
be considered:

(1) A smooth, but possibly non-linear shape of the background. In this case a higher
order polynomial or other smooth functions could be assumed to describe the
background. Such functions can be fitted in the sideband regions and then extra-
polated into the signal region. This would change the factor, with which Nsideband
is multiplied in equation 8.2, thus leading to a slightly di�erent result. The di�er-
ence to the original result could then be quoted as systematic uncertainty arising
from the background shape.

(2) A “peaking background” which contributes only to the signal region. Such a
background cannot be assessed by sideband subtraction. One therefore needs
to find other means as, for example, Monte Carlo simulations to investigate any
possible background peaking underneath the signal.

1) In fact the eye is being fooled in this example, as an almost linear background had been generated. Nev-
ertheless, in a real experiment the background shape is usually not a-priori known, and then a di�erent
shape always needs to be considered.
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Figure 8.1 Background estimation by sideband subtraction (exercise 8.1a)).

b) If you trust the Monte Carlo simulation on the mass resolution, the best choice for
the mass cut is given by the smallest total uncertainty. This is the case for the smal-
lest value of

p
Nsig +Nbkg/Nsig with the expected numbers Nsig and Nbkg of signal

and background events in the signal region. Since Nsig is not known (it is the out-
come of the measurement!), the figure of merit to be optimised is

p
Nbkg/A with

the signal acceptance A. Evaluating Nbkg from sideband subtraction and comput-
ingA by assuming a Gaussian signal aroundmB = 5.28GeV with �sig = 0.05GeV
yields for mass cuts between ± 0.01 and ± 0.20 GeV around mB the values in
table 8.1 and figure 8.3, respectively. The best measurement would thus be made,
when applying a mass cut of ± 0.06 GeV around the nominal B mass, correspond-
ing to just 1.2 standard deviations on the invariant mass distribution (see figure 8.2).
The signal acceptance would just be 77 % and the resolution on the invariant mass
needs to be precisely simulated to yield the correct acceptance. A mass cut as tight
as this is therefore usually not recommended.
If you do not trust the simulated mass resolution a mass cut of ± 0.15 GeV, corres-
ponding to ± 3�, is a usual choice. This cut has an ine�ciency of only 0.3 % (for
a perfect Gaussian), therefore small uncertainties in the mass resolution would not
a�ect the final result.

c) A di�erent mass resolution changes the signal acceptance when the mass cut is
unchanged. Using a given signal Monte Carlo sample, the e�ect of a faulty resol-
ution can be assessed as it is explained in chapter 8.4.2.2: For each Monte Carlo
event with reconstructed mass m additional histograms are filled with m ! m+

k · (mB �m), where k is the relative change in the mass resolution.
Let us assume that the invariant mass follows a Gaussian resolution with width
� = 0.05 GeV, which was determined from a sample of Monte Carlo events. Ap-
plying the above procedure for resolutions of ± 10 % therefore results in new mass
distributions of these MC events with � = 0.055 GeV and 0.045 GeV, respect-
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Figure 8.2 Di�erent cuts on the invariant mass (exercise 8.1b)).
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Figure 8.3 Signal acceptance and figure of merit
p

Nbkg/A for di�erent applied cuts on
the invariant mass (exercise 8.1b), values from table 8.1).

ively2). A comparison between the three di�erent simulated resolutions is given
in figure 8.4: Although the nominal resolution seems to fit the data best, the vari-
ations still look reasonable; a variation of ± 10 % therefore is a good choice for
estimation of systematics.
The resulting systematic uncertainties together with the statistical uncertainties,
acceptances, and branching fractions for both mass cuts of 2�MC and 3�MC are
given in table 8.2.
It is clearly seen, that despite the larger statistical error, the ± 3� cut provides a
much smaller total uncertainty. In fact, one would have to know the resolution to
better than ± 2 % to profit from the slightly better statistical error of a ± 2� mass
cut.

2) Note, that this is di�erent then just simulating new events with a di�erent resolution: In our case the
three distributions (± 10 % and the original) are completely correlated, since the same original events
were used! Therefore no statistical uncertainties occur in the study.
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Mass cut [GeV] Nbkg ± �Nbkg Acceptance A
p

Nbkg/A

± 0.01 142.1± 2.2 0.1588 76.3

± 0.02 284.2± 4.4 0.3103 56.1

± 0.03 426.3± 6.5 0.4510 48.0

± 0.04 568.4± 8.7 0.5758 44.1

± 0.05 710.5± 10.9 0.6825 42.2

± 0.06 852.6± 13.1 0.7697 41.6

± 0.07 994.7± 15.2 0.8383 41.8

± 0.08 1136.8± 17.4 0.8904 42.6

± 0.09 1278.9± 19.6 0.9283 43.9

± 0.10 1421.0± 21.8 0.9549 45.6

± 0.11 1563.1± 23.9 0.9723 47.5

± 0.12 1705.2± 26.1 0.9838 49.7

± 0.13 1847.3± 28.3 0.9908 51.9

± 0.14 1989.4± 30.5 0.9949 54.3

± 0.15 2131.5± 32.6 0.9973 56.7

± 0.16 2273.6± 34.8 0.9986 59.1

± 0.17 2415.7± 37.0 0.9993 61.6

± 0.18 2557.8± 39.2 0.9997 64.0

± 0.19 2699.9± 41.3 0.9998 66.4

Table 8.1 Variation of the background estimation Nbkg, signal acceptance A, and the
figure of merit

p
Nbkg/A with di�erent applied cuts on the invariant mass (exercise 8.1b)).

The Nbkg values were estimated by sideband subtraction (see previous exercise 8.1a)).

d) The fit function is

f(m) = Nsig · BW · 1p
2⇡ �2

· e
� (m�mB)

2

2�2
+ a + b · (m�mB) (8.3)

with the free parameters Nsig = N � Nbkg = number of background subtracted
signal events and o�set a and slope b of the linear function for the background.
The bin width BW is 0.01 GeV and the multiplication automatically takes care of
the correct normalization.
With a least-squares fit of a single Gaussian with fixed mean mB = 5.28 GeV and
width � = 50 MeV (shown in figure 8.5) the result for the number of signal events
is Nsig = 4951.0±82.8, directly corresponding to a branching ratio of B = (4.95±
0.08) · 10�6. This value is very consistent with the result obtained in the previous
exercise with a sideband subtraction and slightly more precise. The somewhat
higher accuracy is of course not surprising, since we have added the information
on the signal shape to the analysis. A systematic uncertainty on the background
shape can for instance be estimated by adding a quadratic term + c · (m�mB)

2 to
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Figure 8.4 Comparison of di�erent simulated mass resolutions (exercise 8.1c)).
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Figure 8.5 Fit of signal and background with a Gaussian plus a linear background.
(exercise 8.1d)).

the background in equation (8.3) which results in Nsig = 4978.5±85.9 fitted signal
events. By using the di�erence to the original result we can estimate a systematic
error of 27.5 events, corresponding to �B

bkg syst = ± 0.03 · 10�6.
By performing a fit to the signal we may introduce an additional source of system-
atics, which is a possible uncertainty on the signal position and shape. In general
both the absolute mass scale and the mass resolution of the real data might not be
perfectly simulated. Therefore often not only the signal size but also its mean and
width are left free in the fit to become independent of the simulation. Releasing
mB and the resolution � in the fit results inNsig = 4862.9±84.5 fitted signal events
(assuming a linear background shape) and a fitted width of � = 46.4 ± 0.8 MeV.
Both values are significantly di�erent from the previously fitted signal estimate and
the assumed width of 50MeV, pointing to problem in the MC description of the sig-
nal width. One example of such a problem would be tails of the signal distribution
(sometimes modeled by a second Gaussian with a width � �), which would not be
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Mass cut of Mass cut of
± 2� = ± 0.10 GeV ± 3� = ± 0.15 GeV

Acceptance (�10 % resolution) 0.974 0.999

Acceptance (nominal) 0.955 0.997

Acceptance (+10 % resolution) 0.931 0.994

Relative acceptance systematics ± 0.0224 ± 0.0027

Relative background systematics ± 0.0046 ± 0.0067

Relative statistical uncertainty ± 0.0166 ± 0.0171

Total relative uncertainty ± 0.0046 ± 0.0067

Number Nsig of signal events 4702± 78 4903± 84

Branching fraction B [10

�6
] 4.92± 0.08stat 4.92± 0.08stat

±0.02bkg ± 0.11acc ±0.03bkg ± 0.01acc

= 4.92± 0.14 = 4.92± 0.09

Table 8.2 Acceptances for nominal and by 10 % increased/decreased mass resolutions
and the corresponding systematic uncertainties for mass cuts of ± 2� and ± 3� around
mB . Given are also the statistical, background, and total uncertainties as well as the
resulting branching fractions. The systematics on the sideband estimated background
(see exercise 8.1c)) includes only the statistical uncertainty — it does not include possible
uncertainties on the shape. The branching fractions were computed using the formula
given in the exercise.

taken into account by a fit with a single Gauss function. Here one could introduce
a second Gaussian to the fit and quote the di�erence as systematic uncertainty.

Additional remark: Revealing of the simulated parameters At the very end,
we should resolve how the hypothetical signal and background events were generated.

• In total 5000 signal events were generated according to a double Gaussian signal
distribution

fsignal(m) = 0.9 · 1p
2⇡ �2

1

· e
� (m�m

B

)2

2�2
1

+ 0.1 · 1p
2⇡ �2

2

· e
� (m�m

B

)2

2�2
2 (8.4)

with the widths �1 = 45 MeV and �2 = 80 MeV of the double Gaussian (see
figure 8.6). If this double Gaussian structure is not known before (e.g. from a good
detector simulation), it is prone to give a bias on the acceptance, if the mass cut
is chosen too tight: For the “optimal” cut of ± 60 MeV in exercise 8.1b) the true
acceptance would be underestimated by 2.7 %, while a 3� mass cut would only
result in an error of 0.4 % when assuming a mass resolution of 50 MeV.
With the assumed flux of 1010 B decays and an acceptance of 10 % (not including
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any mass cut) these 5000 signal events correspond to a branching fraction of B =

5 · 10�6.
• The background events were generated according to a 2. order polynomial:

fbkg(m) = 1 + 0.7 · (m�mB) + 0.1 · (m�mB)

2 (8.5)

In total 10 000 events were generated, of which 2067 fall into the signal region of
± 3� = ± 150 MeV around the B mass. Apparently the quadratic term is so small
in our example, that it does not cause any significant di�erence between a linear or
quadratic background description (see figure 8.6).
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Figure 8.6 Data distribution with the true signal and background distributions used for the
generation (equations (8.4) and (8.5)).


