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Exercise 9.1: The running QCD coupling
We want to compute the coefficient a3 (/@) in the expansion

05(Q) = o) a1 (5 ) 02 (1) 2 (5 ) 0 (1) 05 (5 ) @k (1) + 0o,
9.1

where we write p instead of p g for simplicity, as we did in section 9.2.1.1. Following
the derivation given there, we need the expression (9.7) of the 5 function to one order
higher, i.e.

B(as(Q)) = —boa3(Q) — b1al(Q) — b2ai(Q) + O(a?)
= —bg ag(u) — 2a1 (ﬁ) boag(u) - [2(12 (%) + a% (ﬁ)} boag(u)
+

Q Q
—brad(u) - 3a1 (g) brad (i) — baal (i) + O(al) . 9.2)

Differentiating of (9.1) with respect to In Q? gives the expression (9.2) on the left-
hand-side and derivatives of a;(x/Q) on the right-hand-side. Matching the coeffi-
cients of o (1) leads to

s =~ [202(5) i ()] o - () -
7

= 31817 (55) +5boba L(f5) b 93)

with L(1/Q) = In(Q?/u?), where in the second step we have used our previous
results (9.8) for a1 (1/Q) and a2(n/Q). The differential equation (9.3) is readily
solved and gives

BY 2 (M) 42 2(&)_33@)
ag(Q>— bgL(Q)+2bob1L 5) -’ (5)- 9.4)
Let us compare the expansion (9.1) with the direct solution of the three-loop renor-
malisation group equation, das(Q)/dIn(Q?) = —boa2(Q) — by a2 (Q) — baa2(Q).
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my Mz /2 my

expansion (9.1) in as (@) with p = Mz 0.1091  0.1323  0.2105
expansion (9.5) in 1/ ln(Q/AQCD) 0.1091  0.1323  0.2255

Table 9.1 Values of the running coupling a.(Q) obtained with either (9.1) or (9.5). In both
cases, as(Mz) = 0.1184 is taken as input.

According to equation (6) in [1] we have

a (Q):L—#b—1 NI 4 ﬁ(anL'—lnL’—1)+b—2
s bo L’ (bQL/)2 bo (bol/)3 bg bo
9.5)

with L' = ln(Q2 / A%CD). The relevant 8 function coefficients read [1]

_ 33—27’LF
o127

b 153 — 19np b 77139 — 15099nF + 32511%
1 = - 2 = .

b
0 2%Un2 345673

9.6)

For the mass range considered in this exercise we have ny = 5 active quark flavours,
and the coeflicients evaluate to

by ~ 0.61, by~ 0.24, by ~ 0.09. 9.7)

We note that they nicely decrease in size, so that we expect good convergence of the
expansion (9.2). In order to obtain as(Mz) = 0.1184 [1, 2] in (9.5), we need the
value Agcp = 213 MeV for the QCD scale parameter. For masses we use the values

my = 4.18 GeV, m¢ = 160 GeV Mz =91.1876 GeV 9.8)

from [2], where the quark masses mq (with ¢ = b, t) are running MS masses evaluated
at the renormalisation scale pp = mq.

The results for the running coupling are given in table 9.1. We see that for y =
m¢ and p = Mz /2 the two representations (9.1) and (9.5) agree within the given
accuracy. For . = my, there is, however, a discrepancy of about 7%. This indicates
that the accuracy of the expansion (9.1) is degraded by powers of the large logarithm
L(M/my) = In(m3 /M%) ~ —6.2 in missing higher-order terms. In this situation,
the direct solution (9.5) of the renormalisation group equation is more reliable.

Exercise 9.2: Perturbative expansion |
As in the previous exercise, we write u instead of p g for simplicity. Acting with the
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derivative (9.24) in the book on the expansion (9.5) of C' we obtain

o _ 9 Pl k41 0 " b2
dlnp? I:alnu201(Q>:|a5 (1) + |:(91np,202(Q):|as ()

- [bo al (1) + by ai(#)}

Cbkaﬁfloogrca(ff)(k—+1)a§00

a + O™y,

9.9)

where we have used the perturbative expansion (9.4) of the 8 function. With the
explicit expressions for C (1/Q) and Ca2(p/Q) in (9.9) we find

dC

din g = Ko Coos™ (1)

S

+ {(k+1)b001(1)+kb100 — k(k+ l)b%COL<g)}ak+2('u)

— boCokatt — b CokalT?

~bo {Cl(l) — kboCo L(%) } (k+1)at T () + O(as™?)

= O(af™?), (9.10)

where L(1/Q) = In(Q?/1?) and hence 9L (11/Q)/0Inp? = 1 .

Exercise 9.3: Perturbative expansion I
Inserting the expansion (9.14) into (9.13) we obtain

9 BE HBR k+1 9 KE MR k+2 k43

= —P(as(ur)) ® {Co as(ur) + C1 <%%> 045“(#1%)} +0(as™?).

(9.11)

To match the accuracy of the left-hand-side, we must expand P(ozs (w F)) inas(ugR)
up to second order. Using (9.6) and (9.8) in (9.12), we have

P(as(ur)) = P +PraZ(ug) +O(ad), (9.12)

2
2
as(pr) —bo In “—5 s (LR)
HRr
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so that the right-hand-side of (9.11) turns into

—Py®Co |kt (ug) — bo In Ml a2 (up)
1
~R®C (%%) a2 (ug) — P ® Co ok (up) + O(a ™).
(9.13)
Comparing this with the left-hand-side of (9.11) gives
Ae <”F “R> =Py ®Co (9.14)
Olnp, QR’Q
KF PR Q?
= Cl( ,—> Cl( )+Po®Coln 9.15)
Q' Q Q 12
and
0 HE KR kR
—C =-PRC-PeC
81nu% 2<Q’Q 1 ® Co 0 ®C1 e
2 Q2
+P0®P0®Coln +bQPO®CO( +ln )
Q? Q NR
(9.16)

M CROREI)
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2

PLoCotPooCi( L") by @y | 1n
Q 2 2

MR HE

1 2
+§[50P0®00+P0®P0®00} 1112%7 9.17)
F

where in the differential equation (9.16) we have already inserted the solution (9.15).
If we use (9.9) to make the p dependence explicit, we obtain

2 2
C1 <'uF NR) C1(1,1)+ Py ® Cy 1nQ — kboCo anT’

Q' Q F MR
o (M 18) — o+ [ o+ Ao G0, 0 G
Q' Q ’ "uh

2
- [k:bl Co+ (k+ )by C1 (1, 1)} <
HR

1 2 k(k+1 2
+ *[bopo®co+P0®Po®Co} IHQQTJr wbgco IH2Q7
2 5 2 5
Q@
Mg PR



We see that C; is a polynomial of order 7 in the two logarithms In(Q?/u%) and

In(Q*/uf)-

Exercise 9.4: Evolution equations
Recursive application of the definition

1
[f®g](w):/ dff(z)g(f) 9.19)
gives
_ ldy Ydz Y x
[(f®g)®h](r)—/w ;/y 7f(z)g(;)h(§) (9.20)
and

resmie [ 10 ) o)

Ldz 2 dy y T
:/m ?/m ?f(z)g<;>h<§), 9.21)

where in the last step we have made the substitution y = vz. Noting that the integrals
f; dy fyl dz and fxl dz f; dy are both over the region z < y < z < 1, we see that
(9.20) and (9.21) are equal.

Exercise 9.5: Renormalisation scale variation
The curves in Figure 9.4 in the book (reproduced here as Figure 9.1) correspond to
the following values and errors of T" (given in units of keV):

LO NLO NNLO NNNLO

_ +37 +36 +11 +0.4
p=My 166737 272735 30571l 3089

p=Mg/2 20331 308%38 31671, 30772

The strongly asymmetric error of the NNLO value for = My /2 arises because the
corresponding curve has a shallow maximum at ¢z = 0.4 M ;. Notice that to correctly
determine the corresponding error, one needs I' in the full interval %M H < p<
2My and not just at the end points u = £ My and = 2My;. In a similar fashion,
the strongly asymmetric errors of the NNLO values (for both choices of the central
scale) are due to a shallow maximum of the corresponding curve at . =~ 0.8 M.
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A graphical representation of the values and errors is given in figure 9.2. We see
features that are typical of observables whose tree-level value depends on a high
power of as. There is a rather large shift from the values at LO to those at NLO
— larger than suggested by the uncertainty estimate based on scale variation by a
factor between % to 2. As one goes to even higher orders, the changes in central
values become milder, as well as the dependence on the choice of p.
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Figure 9.1 (corresponds to figure 9.4 in the book) The partial width I" for Higgs-boson
decay into hadrons via a top-quark loop, calculated at successive orders in s and plotted
as a function of the renormalisation scale p in units of My . Parameters used are the pole
masses My = 120 GeV and m: = 175 GeV. The running coupling is taken at the same
perturbative order as the observable, with as(Mz) = 0.1184 in all cases.
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Figure 9.2 Values of I" corresponding to the curves in figure 9.1. The error bars
correspond to a scale variation by a factor between % to 2 around the central scale.
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Exercise 9.6: Lagrange multipliers and Hessian method
As stated below (9.22), we assume that the observable

F(p) = F(Ppin) + D (P — Ppoin) (9.22)
is strictly linear and
AX*(p) = X2 (P) — Xtin = (P — Pmin) " H* (P — Prn) (9.23)

is strictly quadratic in the vector p of fit parameters. Here D is a fixed vector and
H is the Hesse matrix, which is symmetric. To minimise x> (p) under the constraint
F(p) = v we use the method of Lagrange multipliers and thus have to determine the
stationary point of the function

AP, ) = X3(p) — A[F(p) — v]
= Xonin — A[F(Pmin) — v] =AD" (0 = Pin) + (P — Prain) " H+ (P — Pran) -

(9.24)
This provides the conditions
OA(p, A y
%ZZH.(p_pmm)_,\D:o N D~ Dun— 311 LD
(9.25)
and
OA(p, A N )
%:’I)_F(pmin)_DT.(p—pmin)zo = ’U_F(pmin)ngT'H 1'D7
(9.26)

which together fix p and A. In the second step of (9.26) we have used the expression
of p — py,;, derived in (9.25). Inserting the same expression in (9.23), we obtain
)\2

Xiin| P=o = Xiun = 7 DT (H )T H-H™'.D =

D
e D "-H D 9.27)

4
for the value of x?(p) at the constrained minimum. We can finally use (9.26) to
replace A and then have

2
_ F(p..
szmn|F=u - sznin = m . (9.28)
DT-H-1.D

We see that xzﬂn| F—, 1S quadratic in v, as stated after (9.22). The condition (9.22)
reads

Xmin| F=v = Xmnin = 17, (9.29)
where T is the tolerance, which according to (9.28) implies

v—F(pyn) = £ TVDT-H-1.D. (9.30)
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The two corresponding values of v determine the uncertainty on F'(p,,,) in the Lag-
range multiplier method. This is equivalent to the uncertainty computed in the Hes-
sian method, which according to (9.19) reads

T
AR =1/ (25 g1 (28 _ DT. g-1.D, (9.31)
op op

where in the second step we have used (9.22).
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