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Markus Diehl

Exercise 9.1: The running QCD coupling
We want to compute the coe�cient a3(µ/Q) in the expansion
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(9.1)

where we write µ instead of µR for simplicity, as we did in section 9.2.1.1. Following
the derivation given there, we need the expression (9.7) of the � function to one order
higher, i.e.
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Di�erentiating of (9.1) with respect to lnQ2 gives the expression (9.2) on the left-
hand-side and derivatives of ai(µ/Q) on the right-hand-side. Matching the coe�-
cients of ↵4

s(µ) leads to
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with L(µ/Q) = ln(Q2/µ2
), where in the second step we have used our previous

results (9.8) for a1(µ/Q) and a2(µ/Q). The di�erential equation (9.3) is readily
solved and gives
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Let us compare the expansion (9.1) with the direct solution of the three-loop renor-
malisation group equation, d↵s(Q)/d ln(Q2
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mt MZ/2 mb

expansion (9.1) in ↵s(µ) with µ = MZ 0.1091 0.1323 0.2105

expansion (9.5) in 1

�
ln

�
Q/⇤QCD

�
0.1091 0.1323 0.2255

Table 9.1 Values of the running coupling ↵s(Q) obtained with either (9.1) or (9.5). In both
cases, ↵s(MZ) = 0.1184 is taken as input.

According to equation (6) in [1] we have
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with L0
= ln

�
Q2/⇤2

QCD
�
. The relevant � function coe�cients read [1]
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(9.6)

For the mass range considered in this exercise we have nf = 5 active quark flavours,
and the coe�cients evaluate to

b0 ⇡ 0.61 , b1 ⇡ 0.24 , b2 ⇡ 0.09 . (9.7)

We note that they nicely decrease in size, so that we expect good convergence of the
expansion (9.2). In order to obtain ↵s(MZ) = 0.1184 [1, 2] in (9.5), we need the
value ⇤QCD = 213 MeV for the QCD scale parameter. For masses we use the values

mb = 4.18 GeV , mt = 160 GeV , MZ = 91.1876 GeV (9.8)

from [2], where the quark massesmq (with q = b, t) are running MS masses evaluated
at the renormalisation scale µR = mq .

The results for the running coupling are given in table 9.1. We see that for µ =

mt and µ = MZ/2 the two representations (9.1) and (9.5) agree within the given
accuracy. For µ = mb there is, however, a discrepancy of about 7%. This indicates
that the accuracy of the expansion (9.1) is degraded by powers of the large logarithm
L(MZ/mb) = ln(m2

b/M
2
Z) ⇡ �6.2 in missing higher-order terms. In this situation,

the direct solution (9.5) of the renormalisation group equation is more reliable.
————————————————————————————————-

Exercise 9.2: Perturbative expansion I
As in the previous exercise, we write µ instead of µR for simplicity. Acting with the
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derivative (9.24) in the book on the expansion (9.5) of C we obtain
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(9.9)

where we have used the perturbative expansion (9.4) of the � function. With the
explicit expressions for C1(µ/Q) and C2(µ/Q) in (9.9) we find
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where L(µ/Q) = ln(Q2/µ2
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————————————————————————————————-

Exercise 9.3: Perturbative expansion II
Inserting the expansion (9.14) into (9.13) we obtain
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To match the accuracy of the left-hand-side, we must expand P
�
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�
in ↵s(µR)

up to second order. Using (9.6) and (9.8) in (9.12), we have

P
�
↵s(µF )

�
= P0

"
↵s(µR)� b0 ln

µ2
F

µ2
R

↵2
s(µR)

#
+ P1↵

2
s(µR) +O(↵3

s) , (9.12)



54

so that the right-hand-side of (9.11) turns into
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Comparing this with the left-hand-side of (9.11) gives
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and
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where in the di�erential equation (9.16) we have already inserted the solution (9.15).
If we use (9.9) to make the µR dependence explicit, we obtain

C1

✓
µF

Q
,
µR

Q

◆
= C1(1, 1) + P0 ⌦ C0 ln

Q2

µ2
F

� kb0C0 ln

Q2

µ2
R

,

C2

✓
µF

Q
,
µR

Q

◆
= C2(1, 1) +

h
P1 ⌦ C0 + P0 ⌦ C1(1, 1)

i
ln

Q2

µ2
F

�
h
kb1C0 + (k + 1)b0C1(1, 1)

i
ln

Q2

µ2
R

+

1

2

h
b0P0 ⌦ C0 + P0 ⌦ P0 ⌦ C0

i
ln

2 Q2

µ2
F

+

k(k + 1)

2

b20 C0 ln

2 Q2

µ2
R

� (k + 1)b0P0 ⌦ C0 ln

Q2

µ2
F

ln

Q2

µ2
R

. (9.18)



55

We see that Ci is a polynomial of order i in the two logarithms ln(Q2/µ2
F ) and

ln(Q2/µ2
R).

————————————————————————————————-

Exercise 9.4: Evolution equations
Recursive application of the definition
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where in the last step we have made the substitution y = vz. Noting that the integralsR 1
x

dy
R 1
y

dz and
R 1
x

dz
R z
x

dy are both over the region x < y < z < 1, we see that
(9.20) and (9.21) are equal.

————————————————————————————————-

Exercise 9.5: Renormalisation scale variation
The curves in Figure 9.4 in the book (reproduced here as Figure 9.1) correspond to
the following values and errors of � (given in units of keV):

LO NLO NNLO NNNLO

µ = MH 166

+37
�28 272

+36
�32 305

+11
�17 308

+0.4
�5

µ = MH/2 203

+51
�37 308

+38
�36 316

+1
�11 307

+2
�8

The strongly asymmetric error of the NNLO value for µ = MH/2 arises because the
corresponding curve has a shallow maximum at µ ⇡ 0.4MH . Notice that to correctly
determine the corresponding error, one needs � in the full interval 1

2MH  µ 
2MH and not just at the end points µ =

1
2MH and µ = 2MH . In a similar fashion,

the strongly asymmetric errors of the NNLO values (for both choices of the central
scale) are due to a shallow maximum of the corresponding curve at µ ⇡ 0.8MH .
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A graphical representation of the values and errors is given in figure 9.2. We see
features that are typical of observables whose tree-level value depends on a high
power of ↵s. There is a rather large shift from the values at LO to those at NLO
— larger than suggested by the uncertainty estimate based on scale variation by a
factor between 1

2 to 2. As one goes to even higher orders, the changes in central
values become milder, as well as the dependence on the choice of µ.
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Figure 9.1 (corresponds to figure 9.4 in the book) The partial width � for Higgs-boson
decay into hadrons via a top-quark loop, calculated at successive orders in ↵s and plotted
as a function of the renormalisation scale µ in units of MH . Parameters used are the pole
masses MH = 120 GeV and mt = 175 GeV. The running coupling is taken at the same
perturbative order as the observable, with ↵s(MZ) = 0.1184 in all cases.
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Figure 9.2 Values of � corresponding to the curves in figure 9.1. The error bars
correspond to a scale variation by a factor between 1

2 to 2 around the central scale.

————————————————————————————————-
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Exercise 9.6: Lagrange multipliers and Hessian method
As stated below (9.22), we assume that the observable

F (p) = F (pmin) +D
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is strictly quadratic in the vector p of fit parameters. Here D is a fixed vector and
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which together fix p and �. In the second step of (9.26) we have used the expression
of p� pmin derived in (9.25). Inserting the same expression in (9.23), we obtain
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for the value of �2
(p) at the constrained minimum. We can finally use (9.26) to

replace � and then have
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We see that �2
min

��
F=v is quadratic in v, as stated after (9.22). The condition (9.22)

reads
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where T is the tolerance, which according to (9.28) implies
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The two corresponding values of v determine the uncertainty on F (pmin) in the Lag-
range multiplier method. This is equivalent to the uncertainty computed in the Hes-
sian method, which according to (9.19) reads
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@p

◆T

H�1

✓
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@p

◆
= T

p
D

T ·H�1·D , (9.31)

where in the second step we have used (9.22).
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