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11
Analysis walk-throughs
Aart Heijboer and Ivo can Vulpen

Exercises 1–3: Higgs-boson search in the 4-muon final state
The first tree exercises in the book describe a search for a signal on top of a SM
background. Given the recent discovery of the Higgs boson we prepared a single
exercise on the search for the Higgs boson in the 4-muon final state, i.e. a (fake) data
set that describes a 4-muon invariant mass spectrum using histograms of 200 MeV
bins.

The histograms and skeleton for several routines can be found in the code tarball:

Walkthrough_skeleton skeleton code (and your code)
Histograms_fake.root histograms with mass distributions
rootlogon.C some default settings for plots

First test the code and reproduce the invariant-mass plot
root> .L Walkthrough_skeleton.C++
root> MassPlot(20) , where 20 is a rebin-factor

In the next exercises we will look in detail at these distributions and will try to inter-
pret it in terms of the presence/absence of a possible Higgs signal. The main point
is to discuss the main concepts in their simplest form to be able to follow the more
complex implementation in the “real” publication.

Part 1: optimize the mass window: expected/observed significance
We will first try to find the mass window that optimizes the significance for a count-
ing experiment. In this exercise, use Poisson counting and the original histograms
with the 200 MeV bins.

Code you could use from the skeleton code:

IntegratePoissonFromRight() - small helper routine
Significance_Optimization() - start for the code
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Figure 11.1 Distribution of the 4 muons invariant mass for the SM background (red), a
possible Higgs signal at 125 GeV (blue) and the data.

a) Find the mass window that optimizes the expected significance.
Make a plot of the significance as a function of the width of the mass window
around 125 GeV and explain the structure you see.

b) Find the mass window that optimizes the observed significance.
And promise to never do that again.

c) Find the mass window that optimizes the expected significance for a 5 times higher
luminosity.

d) At what Luminosity do you expect to be able to make a discovery ? Note: The
expected significance is more than 5 �.

Solution

a) Use function Significance_Optimization(1.00).
For Lumi scale factor = 1.00
Expected:
optimal mass window = 7.15 GeV ! expected significance = 2.04 �.
The funny “peaked” shape of the distribution is related to the rounding to integer
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Figure 11.2 Significance versus width mass window around 125 GeV.

number of events needed to integrate the Poisson distribution when computing the
p-value.

b) Use function Significance_Optimization(1.00).
For Lumi scale factor = 1.00
Observed:
optimal mass window = 2.85 GeV ! observed significance = 3.92 �.

c) Use function Significance_Optimization(5.00).
For Lumi scale factor = 5.00
Expected:
optimal mass window = 6.55 GeV -> expected significance = 4.79 �.

d) Use function Significance_Optimization(x) and vary x. Expected sig-
nificance above 5 � for first time at Lumi scale factor of 5.40.
For Lumi scale factor = 5.40
Expected:
optimal mass window = 6.35 GeV ! expected significance = 5.02 �.

————————————————————————————————-

Part 2: data-driven background estimate — sidebands
To estimate the background in the signal region we try to determine the scalefactor
(↵) of the background in the side-band region. The combined signal + background



66

mass distribution as a function of the 4-lepton invariant mass (m4l) is parametrised
as

f(m4l) = µ · fHiggs(m4l) + ↵ · fSM(m4l) ,

where the fHiggs(m4l) and fSM(m4l) are the expected distribution of events for the
signal and background respectively.

Code you could use from the skeleton code:

SideBandFit()

e) Do a likelihood fit to the side-band region 150mh  400 GeV to find the optimal
scale factor for the background (↵) ?

f) Estimate the background and it’s uncertainty (b±�b) in the signal region using
your answer from the previous question. You can use your optimal mass window
or a 10 GeV one.

We can now try to re-compute the expected and observed significance using this new
background estimate.

g) Compute the expected and observed significance using this new background esit-
mate.
Note: Draw a random number of events (for b-only and s+b) multiple times (each
one is a toy-experiment). For each toy-experiment, not just draw a random (Pois-
son) number, but also take the uncertainty on the central value into account using
the (Gaussian) uncertainty �b from the previous question. Compare also these
significances to the ones in the earlier questions and explain the di�erence.

Solution

e) Use function SideBandFit().

Background scale factor from sideband fit: ↵ = 1.11+ 0.07
� 0.06

f) Use function SideBandFit().
SM background in mass window: (width default masswindow = 10.00 GeV):

unscaled: Nbgr = 6.42
scaled: Nbgr = 7.10+ 0.42

� 0.40

g) Use function ExpectedSignificance_ToyMC()

Note: In a 10 GeV mass window we expect from background (b=6.42/7.10 events:
unscaled/scaled), from signal (s=5.96) and in data we observe (d=16) events.

option 1: assuming no background uncertainty and scaling (b = 6.42,�b = 0.00):
ExpectedSignificance_ToyMC(6.42,5.96,0.00,1e6,0)
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p-value = 3.12e-02 ! 1.86 �.

option 2: assuming scaled background with background uncertainty (b = 7.10,�b =

0.41): ExpectedSignificance_ToyMC(7.10,5.96,0.41,1e6,0)
p-value = 3.13e-02 ! 1.86 �.

In this case we see that the (small) background uncertainty and this small number
of events, the uncertainty has very little impact. Try to see what happens at larger
luminosities.

————————————————————————————————-

Part 3: compute the test statistic
For each data-set we can compute the Likelihood Ratio test statistic. We take here
(simpler version than the one described in the walkthrough chapter):

X = �2 ln(Q), with Q =

L(µ = 1)

L(µ = 0)

.

For each of the two hypotheses we compute the Likelihood as (use ↵ = 1):

�2 log(L) = �2

X

bins

log(Poisson(Ndata | µfbinHiggs + ↵fbinSM )) .

h) Write a routine that computes the likelihood ratio test-statistic for a given data-set
(h_mass_dataset) from the expected distributions for the background and the
signal.
double Get_TestStatistic(TH1D *h_mass_dataset, TH1D *h_template_bgr,

TH1D *h_template_sig)

Note: We will use this routine extensively in part 4 of this exercise when we’ll
compute the test statistic for a large number of fake data-sets.

i) Compute the likelihood ratio test-statistic for the actual “real” data

Solution

h) See function Get_TestStatistic().

i) Use Significance_LikelihoodRatio_ToyMC

Value of the test-statistic for the “real” data-set: X = -11.51.

Note that this routine is designed for the next part of the exersise, but you can
see how it is done.

————————————————————————————————-
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Part 4: create toy data-sets
j) Write a routine that generates a toy data-set from MC templates.

How: take the histogram h_mass_template and draw a Poisson random number in
each bin using the bin content as central value. The routine should return the full
fake data-set (histogram).

k) Generate 1000 toy data-sets for background-only,compute for each the test-statistic
using the routine from part 4 of this exercise and plot the test statistic distribution.
Then do the same for 1000 toy data-sets for the signal+background hypotheses.

l) Plot both distributions in a single plot and indicate the value of the test-statistic in
the ’real’ data.

Solution

j) Look at function GenerateToyDataSet(TH1D *h_mass_template).

k) Look for the implementation as part of exercise l).

l) For 10 000 toy experiments you get the distribution by running
Significance_LikelihoodRatio_ToyMC(10000,2), where the second
option gets you the coloured one and two sigma error regions on the b-only distri-
bution.
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Figure 11.3 Test statistic distribution for 10 000 b-only, 10 000 s+b experiments. The value
of the test statistic in the data is also indicated.

The value of the test-statistic X are for:

median s+b experiment: X = -5.63 ,
median b-only experiment: X = 4.62 ,
data: X = -11.51 .
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As we see, the excess in the data is even larger than we expect if a Higgs boson
would be present.

————————————————————————————————-

Part 5: discovery-aimed: compute p-values
m) Compute the p-value or 1-CLb (under the b-only hypothesis)

- for the average (median) b-only experiment ,
- for the average (median) s+b experiment [expected significance] ,
- for the data [observed significance] .

n) Draw conclusions:

- Can you claim a discovery with this ’real’ data-set ?
- Did you expect to make a discovery ?
- At what luminosity do you expect to be able to make a discovery ?

Solution

m) Compute the p-value or 1-CLb (under the b-only hypothesis): For 10 000 toy ex-
periments you get the distribution by running
Significance_LikelihoodRatio_ToyMC(10000,2), where the second
option gets you the coloured one and two sigma error regions on the b-only distri-
bution.
The values for 1-CLb are for

median s+b experiment: 1-CLb = 6.70e-03 (2.47 �) ,
median b-only experiment: 1-CLb = 0.500 (0.00 �) ,
data: 1-CLb =2.00e-04 (3.54 �) .

n) Draw conclusions:
The observed significance is 3.54 �. This is smaller than 5 � so we can not claim
a discovery.

The expected significance is 2.47 �. This is smaller than 5 � so we did not
expect to be able to make a discovery.

To see how the expected significance increases you can try to redo this study,
but scaling the luminosity. In the answers we only included a scale factor for the
signal. Introduce a factor that scales the signal and background yield and see at
what luminosity scale-factor the expected significance exceeds 5 �. Note that
you do not have time to run tens of millions of toys. Take a few points and try to
extrapolate.

————————————————————————————————-
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Part 6: exclusion-aimed: compute CLs+b

o) Compute the CLs+b

- for the average (median) s+b experiment ,
- for the average (median) b-only experiment [expected CLs+b] ,
- for the data [observed CLs+b] .

p) Draw conclusions: We can try to see if we can exclude the mh=125 GeV hypo-
thesis. As that is a yes/no answer only, we can also try to estimate what scale factor
of the Higgs boson production cross-section (relative the the SM prediction) we
can exclude or were expected to be able to exclude.

- Can you exclude the mh=125 GeV hypothesis ?
- What cross-section scale factor can we exclude ?
- Did you expect to be able to exclude the mh=125 GeV hypothesis ?
- What cross-section scale factor did you expect to be able to exclude ?

Solution

o) Compute the CLs+b (under the s+b-only hypothesis):
The values for CLs+b are for

median s+b experiment: CLs+b = 0.5000 ,
median b-only experiment: CLs+b = 0.0227 ,
data: CLs+b = 0.8425 .

p) Draw conclusions:
The expected CLs+b for the average b-only experiment is 0.0227. As this is smaller
that 0.05, we expected to be able to exclude the mh=125 GeV hypothesis. How-
ever, as the (observed) value of CLs+b in the data is 0.84, we cannot exclude this
hypothesis. This is not so weird, since we see an excess of events. Even more, we
even more events than we expected in the case the Higgs boson would be present
in the data.

We can now increase the signal cross-section scale factor using the third para-
meters in the function Significance_LikelihoodRatio_ToyMC() to
see what value of the signal cross section we can actually exclude with this data-
set. For a signal scale factor of 2.50 for example we would run Signific-
ance_LikelihoodRatio_ToyMC(10000,2,2.50). Scanning the signal
scale factor we see:

scale factor = 2.50: CLs+b in data = 0.0920 (> 5% no exclusion) ,
scale factor = 2.75: CLs+b in data = 0.0477 (< 5% excluded) .

A more delicate scan (or interpolation from a few points) will find you the signal
scale factor you can exclude.

————————————————————————————————-
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Part 7: Measurement of the production cross section
Using again the parametrisation of the expected background and signal yields:

f(m4l) = µ · fHiggs(m4l) + ↵ · fSM(m4l) ,

we can try to get an estimate of the Higgs cross-section scale factor.

q) Do a fit where you leave the cross-section scale factor for both the signal and back-
ground free. What is the best value for µ and ↵ ?

r) What is the uncertainty on µ ?

Solution
We run the fit using 2 GeV bins, i.e. use a rebin factor of 10.

q) Run MuFit(10,1).
Best fit: ↵ = 1.10 , µ = 1.29 .

r) Run MuFit(10,2).
We should “profile” the uncertainty in ↵. Just in case, we also show the value if
we would just look at the slice at the best value of ↵.

Result on mu:
best alpha: µ = 1.29+ 0.65

� 0.53 ,

profiled: µ = 1.29+ 0.65
� 0.54 .

Not a strange result as the variables are not so much correlated. Let us point out
here that in the real Higgs analysis the signal scale factor is strongly correlated with
the actual mass as the production cross section and branching fraction of the Higgs
to four muons depends on the mass of the Higgs boson.

————————————————————————————————-

Exercise 11.4: Poisson errors on data points
The computation of the various error intervals is coded in PoissonError.C.

To get all the four di�erent error regions run:

root> .L PoissonError.C++
root> ComputeAllErrorRegions()

You can change the number of observed events in the routine and it computes by
default all 4 error regions.

————————————————————————————————-
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Exercise 11.5: Likelihood for a measurement

a) A change of units of the probability densities psigi and pbgi , results in a scaling of
these PDFs. The corresponding multiplicative factor in the logarithm results in a
constant o�set in the logarithm of the likelihood. Such an o�set does not play a
role in optimisation (it does not change the position of the likelihood maximum)
and drops out of any likelihood ratio. Hence, the units used to expressed these
PDFs can be freely chosen, as long as this is done consistently for the signal and
background PDFs.

b) We consider the one-dimensional problem where we want to compute the likeli-
hood for a set of measurements of some real-valued observable (e.g. the recon-
structed invariant mass of detected events). If the data are binned, the probability
to find ni entries in bin i is given by the Poisson probability. For the total log-
likelihood (all bins) this gives:

lnL(data|H) =

X

i

ln

�e�µ
iµn

i

i

ni!

�
, (11.1)

where ni is the observed number of events in bin i; and µi is the mean number
of entries expected in bin i for the hypothesis H for which we are computing the
likelihood. Note that µi is simply the PDF of the observed quantity (called pi in
the text), up to a multiplicative factor related to the normalisation and the width of
the bins.
In the limit, where the bin size is very small, all bins will have either zero or one
entry. Grouping the terms with ni = 0 and those with ni = 1 allows us to write:

lnL(bins|H) =

X

i,n=1

ln(µie
�µ

i

) +

X

i,n=0

ln(e�µ
i

) = (11.2)

X

i,n=1

ln(µi) +

X

i,n=1

�µi +

X

i,n=0

�µi = (11.3)

X

i,n=1

ln(µi)� µtot. (11.4)

The first term is a sum over the events, summing all the µi (or pi) computed for the
observed events; µtot is the total number of events predicted by the hypothesis H
(it is called ⌫ in the text).

c) Note that the script Measurement.C provides a framework for generating the
pseudo-experiments and making the plots from the measurment section of the walk-
through chapter.
The result of omitting the PDFs for the observed �M is shown in the figure for
pseudo-experiments with a true Z0 mass of 250 GeV, 35 signal events and 300
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background events. As can be seen, the mass measurement is not significantly
influenced by the omission of the terms in the likelihood.
However, the measurement of the signal size (which could be used for a cross sec-
tion measurement) is biased significantly: the mean is 40.0 in stead of 35.7 when
the correct likelihood is used. The latter is in good agreement with the true value
of 35.0.
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Figure 11.4 Distribution of the measured MZ0 (left) and the number of signal events ⌫sig,
obtained from 500 pseudo-experiments. Distributions are shown for the correct likelihood
(black) and for a likelihood lacking the p(�M ) factors (red).

d) Note: There is a typo in the exercise: It should be MZ0
= 251 GeV, not

MZ0
= 151 GeV.

Both methods proposed in the question should give the same results. We show
result of adding the constraint directly in the likelihood computation. In the code,
�2 logL is computed. This constraint can be implemented by adding a term
(

M
Z

0�251
2.0 )

2 to this �2 logL. The resulting likelihood curve is shown here. For
our particular dataset, the resulting combined measurement is MZ0

= 250.5+1.8
�2.1.

Note that the combined result (⇠ 2 GeV) is dominated by the constraint, which has
a smaller uncertainty that the dataset (2.0 vs 2.5 GeV).

————————————————————————————————-
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Figure 11.5 likelihood plot without (black) and with(red) the constraint.


