MC4BSM DESY, April 2013

35 ET (GeV)

The pervasiveness of jets

- ATLAS and CMS have each published 300+ papers since 2010
 - More than a third of these papers make use of jets
 - 60% of the searches papers makes use of jets

Taming reality

One purpose of a 'jet clustering' algorithm is to reduce the complexity of the final state, simplifying many hadrons to simpler objects that one can hope to calculate

Jets as tools

Evolution of jet algorithms

- Two main classes of jet algorithms: cones and sequential recombination
- In the past (e.g. Tevatron) cones were mainly used. Many variants, usually not infrared and collinear safe
- The LHC has seen a push towards standardisation, with all experiments using mainly an IRC-safe algorithm, anti-kt (though ATLAS and CMS managed not to pick the same parameter, R=0.4 and 0.6 for ATLAS, 0.5 and 0.7 for CMS) and a common software library

IRC safe algorithms						
kt	$SR \\ d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 / R^2 \\ hierarchical in rel P_t$	Catani et al '91 Ellis, Soper '93	NInN			
Cambridge/ Aachen	$SR \\ d_{ij} = \Delta R_{ij}^2 / R^2 \\ hierarchical in angle$	Dokshitzer et al '97 Wengler, Wobish '98	NInN			
anti-k _t	$SR \\ d_{ij} = \min(k_{ti}^{-2}, k_{tj}^{-2}) \Delta R_{ij}^{2}/R^{2} \\ gives perfectly conical hard jets$	$\frac{SR}{n(k_{ti}^{-2},k_{tj}^{-2})\Delta R_{ij}^{2}/R^{2}} MC, Salam, Soyez '08}$ (Delsart, Loch)				
SISCone	Seedless iterative cone with split-merge gives 'economical' jets	Salam, Soyez '07	N²InN			
'second-generation' algorithms All are available in FastJet, <u>http://fastjet.fr</u> (As well as many IRC unsafe ones)						

Matteo Cacciari - LPTHE

Jet areas

Jet **areas**, graphically represented by the coloured regions, represent the **susceptibility** of each jet to contamination from **diffuse, soft radiation**

Given an IRC-safe jet algorithm, jet areas can be calculated numerically for each jet, opening the way for a jet-by-jet, rather than average, correction for background contamination

Hard jets and background

Modifications of the hard jet

Background subtraction

If the background momentum density ρ is known, it can be used to correct the transverse momentum of the hard jets:

$$p_T^{\text{hard jet, corrected}} = p_T^{\text{hard jet, raw}} - \rho \times \text{Area}_{\text{hard jet}}$$

MC, Salam, 0707.1378

If ρ is measured on an event-by-event basis, and each jet subtracted individually, this procedure will remove many fluctuations and generally improve the resolution of, say, a mass peak

$$\Delta p_t = \rho A \pm (\sigma \sqrt{A} + \sigma_\rho A + \rho \sqrt{\langle A^2 \rangle - \langle A \rangle^2}) + \Delta p_t^{BR}$$

Irreducible fluctuations: uncertainty of the subtraction

Hierarchical substructure

Matteo Cacciari - LPTHE

MC4BSM 2013 - DESY Hamburg - April 2013

The IRC safe algorithms

	Speed	Regularity	UE contamination	Backreaction	Hierarchical substructure
k _t	000	\mathbf{T}	\mathbf{T}		☺ ☺
Cambridge /Aachen	000	Ţ	\frown		\odot \odot \odot
anti-k _t	0000	☺ ☺	♣/ 🙂	☺ ☺	×
SISCone	\odot	•	000	•	×

Recent activity on jets

- LHC measurements
- Higher order calculations/matching techniques
- Jet substructure tools and calculations

Inclusive jet cross section

Broad agreement within uncertainties (<10% for theory, similar and decreasing fast for experiments)

(Theoretical) uncertainties

► Uncertainties dominated by unknown higher orders in the central region, and by PDFs uncertainties in the forward and high-p_T regions

Non-perturbative corrections

Non-perturbative contributions from **Underlying Event** and **Hadronisation** can be estimated by running MCs with and without them

Note the **very different situation** at R=0.4 and 0.6, due to **cancellations** (or lack thereof) between UE and hadronisation corrections

R-dependent effects

Perturbative radiation: $\Delta p_t \simeq \frac{\alpha_s(C_F, C_A)}{-} p_t \ln R$

Hadronisation:
$$\Delta p_t \simeq -\frac{(C_F, C_A)}{R} \times 0.4 \text{ GeV}$$

Analytical estimates: Dasgupta, Magnea, Salam, arXiv:0712.3014 G. Soyez, arXiv: 1006.3634

Non-perturbative corrections

Jet radius dependence

Matteo Cacciari - LPTHE

Inclusive jet cross secion

ALICE @ 2.76 TeV

(reference for PbPb data)

arXiv:1301.3475

Ratios of two significantly different radii emphasizes hadronisation corrections

Inclusive jet cross sections

2.76TeV/7 TeV ratios from ATLAS

arXiv:1304.4739

- Smaller uncertainties due to cancellations
- Enhanced sensitivity to PDF set
- ▶ Data have been used to complement a PDF fit from HERA data

The revolution lives on

G. Salam, ICHEP 2010

Bern, Dixon, Fabres Cordero, Hoeche, Ita, Kosower, Maitre, Ozeren, 1304.1253 (BLACKHAT+SHERPA)

To this revolution, one should of course add the automated-NLO/MCs one

Matteo Cacciari - LPTHE

W + 5 (and even 6) jets

arXiv:1304.1253

2 jets to NNLO

Back to the inclusive jet and dijet cross sections The state of the art until a few months ago was:

- ► NLO corrections [Ellis, Kunzst, Soper '92, Giele, Glover, Kosower '94, Nagy '02]
- NLO + parton shower [Alioli, Hamilton, Nason, Oleari, Re '11]

The experimental uncertainty already at the level of the theoretical one (and decreasing fast) calls for an NNLO calculation

Very recent result: $pp \rightarrow 2j$ to NNLO)

(gg channel only, and in the leading colour approximation)

[Gehrmann-De Ridder, Gehrmann, Glover, Pires, 1301.7310]

2 jets to NNLO

- NNLO/NLO K-factor ~ 1.2, quite independent of p_T value
- Very small residual scale dependence (<1%)
- No obvious sign of convergence of the series at small (~ 100 GeV) pT

Jet substructure

Original motivation: tag a boosted massive particle whose decay products end up in a single 'fattish' jet

Cone aperture: $R \sim 2m/p_T$

- Electroweak-scale particles (m ~ 100 GeV) boosted at a few hundreds GeV (e.g. coming from the decay of a TeV-scale BSM particle) mean R ~ I
 - Too large for a single 'standard' jet with R=0.4-0.7 to catch all decay products
 - Too small to get separate jets for the decay products

Need a completely new strategy

'Jet substructure' papers in SPIRES

Number of papers containing the words 'jet substructure' and 'LHC'

15. Jet substructure as a new Higgs search channel at the LHC. Jonathan M. Butterworth, Adam R. Davison (University Coll. London), Mathieu Rubin, Gavin P. Salam (Paris, LPTHE). Published in Phys.Rev.Lett. 100 (2008) 242001 e-Print: arXiv:0802.2470 [hep-ph]

Jet substructure

- The substructure of a jet (i.e. the ability to further resolve smaller components) can be exploited to
 - ▶ tag a particular structure inside the jet, i.e. a massive particle
 - Examples: Higgs (2-prongs decay), top (3-prongs decay)
 - remove background contamination from the jet or its components
 - Examples: filtering, trimming, pruning

In the following I'll be mainly illustrating the BDRS tagger/filter as a pedagogical example, and also list other approaches

The BDRS tagger

It's a two-prongs tagger for boosted Higgs, which

- Uses the Cambridge/Aachen algorithm (see why in the next slide)
- Employs a Mass-Drop condition (as well as an asymmetry cut) to find the relevant splitting (i.e. 'tag' the heavy particle)
- Includes a post-processing step, using 'filtering' (introduced in the same paper) to clean as much as possible the resulting jets of UE contamination

Jet substructure as filter

The **jet substructure** can be exploited to help **removing contamination** from a soft background

- Jet 'filtering' Butterworth, Davison, Rubin, Salam, 2008
 Break jet into subjets at distance scale R_{filt}, retain n_{filt} hardest subjets
- Jet 'trimming' Break jet into subjets at distance scale R_{trim}, retain subjets with p_{t,subjet} > ε_{trim} p_{t,jet}
- Jet 'pruning' S. Ellis, Vermilion, Walsh, 2009 While building up the jet, discard softer subjets when $\Delta R > R_{prune}$ and min(pt1,pt2) $< \epsilon_{prune}$ (pt1+pt2)

Aim: limit sensitivity to background while retaining bulk of perturbative radiation

Filtering, trimming and pruning can appear quite similar. These and similar tools are collectively called **groomers**

The strategy

A generic substructure approach to tagging will

- Cluster initially with a large R, so as to collect all the decay products of a boosted heavy particle into a single jet
- Decluster this jet into subjets, using some conditions to decide when to stop the declustering (i.e. find the 'relevant splitting'), possibly including kinematical cuts to reduce the QCD background.
 - The stopping criterion automatically finds the 'right size' for the distance between the two prongs of the heavy particle decay
 - Alternatively to declustering, one can employ one of the jet-shapes based tagging methods, i.e. N-subjettiness ratios
- Optionally add a final 'cleaning' procedure to remove as much as possible spurious soft/background radiation

The jet substructure maze

Apologies for missing or misplaced items or links

Comparison of top taggers

Boost 2010 proceedings, arXiv:1012.5412

Even more curves now on this plot

Comparison of top taggers

Boost **2011** proceedings, arXiv:1201.0008

Law of diminishing returns: improvement has become very hard

Jet substructure tools

- Darwinian evolution will eventually (hopefully!) select a few best tools, through:
 - checks that MCs reproduce data for critical variables/tools
 - checks that one can effectively eliminate contamination from *pileup*

Effectiveness

checks that the tools are **robust**, and possibly can be **understood analytically**

On the importance of checks

Taggers are relatively easy to write, once the basic ideas were spelled out in 2008. Hence their O(20+) proliferation.

Testing them properly, even only at the MC level, can be more tricky. An example from Dasgupta, Marzani, Salam

- Different taggers can appear to behave quite similarly in a limited range of masses.
- Mass-drop, trimming and pruning have often been considered as almost equivalent

On the importance of checks

Taggers are relatively easy to write, once the basic ideas were spelled out in 2008. Hence their O(20+) proliferation.

Testing them properly, even only at the MC level, can be more tricky. An example from Dasgupta, Marzani, Salam

- Different taggers can appear to behave quite similarly in a limited range of masses.
- Mass-drop, trimming and pruning have often been considered as almost equivalent
- Extending the check one can see them to differ significantly

Analytic analysis of taggers

Analytic understanding allows one to study the behaviour of taggers without relying on a MC simulation (that may itself be less than exact)

[Dasgupta, Fregoso, Marzani, Salam, preliminary] Analytic analysis of taggers

modified Mass-Drop

pruning

trimming

More on importance of analytics

Besides the ease of use and the wider reach, analytic control can be useful because MC simulations do not always agree

Jet substructure at LHC

ATLAS 1203.4606: First measurement of substructure variables at LHC

- ATLAS measured and compared to MCs' predictions (splitted/filtered) jet mass, kt splitting scales and Nsubjettiness ratios
- Effects of *pile-up*, and role of *grooming* techniques to reduce them, were also considered

Jet substructure in ATLAS

jet mass

split/filtered mass

Jet substructure in ATLAS

kt distance

N-subjettiness

Matteo Cacciari - LPTHE

MC4BSM 2013 - DESY Hamburg - April 2013

Jet substructure in ATLAS

- Effect of pileup: multiple interactions distort the observable.
- Independence from pileup is recovered for "tagged" mass after filtering
- NB: pilup conditions are/will be much higher than 9 simultaneous interactions

Pileup

78-vertices event from CMS

https://cds.cern.ch/record/1479324

Effect of pileup

- Filtering not sufficient for $N_{PV} \gtrsim 10$, but additional subtraction largely recovers the independence from the pileup level
- Combination of techniques can help

10

20

 $R_{ii} > 0.3$

250

200

150

100

0

<m> (GeV)

50

40

+ splitting + filtering

+ splitting + filtering + subtraction

30

N_{PV}

More on pileup subtraction

The **p_T^{raw}-ρA** technique (also called **area/median**) only corrects a jet's transverse momentum

Each jet shape has its own specific sensitivity to background contamination. How to correct them?

- One option is to study analytically each shape [Alon et al. 1101.3002].
 Can be time consuming and cumbersome
- Alternatively, determine numerically the susceptibility of any IRC-safe jet shape to contamination [Soyez et al. 1211.2811] (this generalises the jet area)

Numerical jet shape correction

- Original distribution reproduced after pileup subtraction
 - Tagging rates independent of amount of pileup after correction of the jet shapes involved in the tagging

Standardisation

FastJet Contrib

A public repository for 3rd party extensions of FastJet

OOO Fastjet - Hepfo	ge x	\mathbf{n}_{M}	
← → C fi 🗋 fastjet	hepforge.org/contrib/ 🖒 🕐	\equiv	
	FastJet is hosted by Hepforge, IPPP Du	urham	
 fastjet.fr fastjet-contrib contrib svn 	FastJet Contrib The fastjet-contrib space is intended to provide a common location for access to 3rd party extensions of FastJet. Download the current version: fjcontrib-1.002 (released 12 April 2013), which contains these contributions. Changes relative to earlier versions are briefly described in the NEWS file. After downloading and unpacking, enter the fjcontrib-1.002/ directory and then run ./configure [fastjet-config=FILE] [prefix=] []		
	make install By default the package installs to the same directories as the FastJet installation.		
	A contribution named "SomeContrib" is usually accessed by including "fastjet/contrib/SomeContrib.hh" in your C++ file, and linking with -ISomeContrib.		
	Developers who wish to develop their own contribution or submit new ones should use svn to checkout the contrib framework,		
	svn checkout http://fastjet.hepforge.org/svn/contrib/trunk fjcontrib		
	then run a local script to get the current set of individual contribs		
	cd fjcontrib/ scripts/update-contribs.sh		
	and follow the instructions in the README and DEVEL-GUIDELINES files.		

Standard' jets pretty much under control at LHC

- Theory and measurements in good agreement, experimental precision going below the theoretical one (at NLO)
- Theory continues to progress: multijet to NLO, dijet to NNLO
- The big news of the past 4-5 years has been the emergence of jet-based taggers and groomers
 - They have proven their worth in 'Standard Model' analyses
 - They are being implemented in BSM searches
 - A word of caution: we should try to avoid the balkanization that happened in the past with cone algorithms, and rather try to grow a coherent, theoretically sound, robust, well tested and standardised library of tools

Extra material

Boosted Higgs tagger

Butterworth, Davison, Rubin, Salam, 2008

→ZH → vīvbb

PP

Boosted Higgs tagger

ZH → vvbb PP

Boosted Higgs tagger

 \rightarrow ZH \rightarrow vvbb PP

Filtering in action

Butterworth, Davison, Rubin, Salam, arXiv:0802.2470

Filtering in action

Filtering in action

The low-momentum stuff surrounding the hard particles has been removed