

ATLAS Prospects for SUSY and UED Discovery at $\sqrt{s} = 10$ TeV

Zuzana Rúriková

R.M.Bianchi, R.Brunelière, S.Caron, J.Dietrich, M.Rammensee Physikalisches Institut, Albert-Ludwigs-Universität Freiburg

Motivation

Physics models

UED

- ► LHC offers a unique opportunity to search for new physics beyond the Standard Model
- Theoretically favoured extensions of Standard Model(SM): Supersymmetry (SUSY) and **Universal Extra Dimensions (UED)**
- We studied the R-parity conserving SUSY and Kaluza-Klein-parity conserving UED scenarios where new particles are produced in pairs and decay in cascade into the lightest SUSY/UED particle which should be stable, weakly interacting and thus escapping the detection in ATLAS.

In order to develop search strategies covering a large variety of signatures, the SUSY/UED parameter space is scanned - three signal grids generated (cross sections $0.1 < \sigma < 2900$ pb).

Model	Characteristics
mSUGRA	SUSY breaking is mediated by gravitational interactions. This model is defined by 5 free parameters: $m_{0,}m_{1/2}$, A_{0} , tan β , μ
	Points generated along the radial lines in $(m_{0,m_{1/2}})$ plane for tan β =10 and 50, A_0 =0, μ >0.
	Phenomenological MSSM with 19 free soft SUSY breaking parameters. All points satisfy experimental bounds from LEP. Tevatron and
pMSSM	dark matter density experiments.

The next lightest SUSY particle (nLSP) types in the pMSSM grid:

- Typical event signature: large missing transverse energy ETmiss and particles with large transverse momentum (jets, leptons, possibly photons)
- This study assumes an LHC centre-of-mass energy $\sqrt{s} = 10$ TeV and an integrated luminosity $\mathcal{L} = 200$ pb⁻¹

Points randomly chosen from [Ref Berger, Gainer, Hewett, Rizzo JHEP 02 (2009)023] Minimal UED scenario with 4+1 dimensions (extra dimension being compactified). Points generated for different compactification scales 1/R= 300,400,...1000 GeV Mass splitting in the KK excitation mass spectrum fixed at $\lambda R = 20$

Analysis based on inclusive searches

Analysed were channels with jets, leptons (e, μ) and missing transverse energy E_{T}^{miss} (jets multiplicities defined inclusively whereas the lepton multiplicities exclusively)

Jet and E_{T}^{miss} cuts

Njets	≥2 jets	≥3 jets	≥4 jets
leading jet Pt [GeV]	>180	>100	>100
jets Pt [GeV]	>50	>40	>40
$\Delta \Phi(\text{jet}, E_{T}^{\text{miss}})$	[>0.2,>0.2]	[>0.2,>0.2,>0.2]	[>0.2,>0.2,>0.2]
E ^{miss} [GeV]	>80	>80	>80
E ^{_miss} >f.M _{eff}	f=0.3	f=0.25	f=0.2
transverse sphericity S ₇	>0.2	>0.2	>0.2

Effective mass distributions for channels which yield best performance:

Lepton cuts

0-lepton	no isolated leptons with Pt>20 GeV
1-lepton	one isolated lepton with Pt>20 GeV and no additional
	isolated leptons with Pt>10 GeV, $M_{T}(I, E_{T}^{miss})$ >100GeV
2-lepton OS	two isolated leptons with Pt>10 GeV and opposite charge

Effective mass M_{eff} - used to search for deviations between SM+Signal and SM expectation

 $M_{eff} = E_T^{miss} + \sum_{i=1}^{N_{jets}} P_T^{jet,i} + \sum_{i=1}^{N_{leptons}} P_T^{lepton,j}$

Most relevant SM backgrounds: top pair and W,Z production

- ► QCD background suppressed by $\Delta \Phi$ cut
- \blacktriangleright in 1-lepton channel M_T cut introduced to effectively suppress the top and W

Discovery reach

ng [GeV]

800

600

400

200

200

► The significance is calculated as convolution of Poisson and Gauss

ATLAS Preliminary at 10 TeV

400

600

5 σ discovery pMSSM with constraints

Discovery reach lines (significance > 5σ) for various channels

in MSUGRA, pMSSM and UED parameter space:

SUSY SU4, σ= 108pb $(m_0 = 200 \text{GeV}, m_{1/2} = 160 \text{GeV}, A_0 = -400, \tan\beta = 10, \mu > 0)$

m₀ (GeV)

UED model

900 1000

1/R [GeV]

term to account for systematic errors.

The overall systematic uncertainty on SM background was estimated to be 50%.

800

min ($m_{\tilde{u}}, m_{\tilde{d}}, m_{\tilde{s}}, m_{\tilde{c}}$) [GeV]

1000

4jet 1-lepton

Conclusions

- The results of scans indicate that ATLAS can discover signals of R-parity conserving SUSY with squark and gluino masses less than 600-700 GeV in many scenarios.
- Signals of Universal Extra Dimensions can be discovered up to compactification scale 1/R = 700GeV.
- Reference: ATLAS note ATL-PUB-2009-342