Dynamic Virtualization of Worker Nodes

Poster Session, Mid-Term Review 30.11&1.12.2009 V. Büge, H. Hessling, Y. Kemp, B. Klein, P. Krauß, M. Kunze, O. Oberst, G. Quast, A. Scheurer and Owen Synge

Goals

- No load-balancing between user group partitions

The Testbed: IC1 Cluster at SCC

- Shared between nine different KIT department
 - 200 compute nodes
- Lustre cluster file system
- 2 x Intel Quadcore Xeon
- 70 TB home space

• 350 TB work space

- 17.5 TFlop peak performance
- Two user group partitions:
- HPC partition: parallel computing (MPI)
- HEP (High Energy Physics) Partition: Seriell computing, High **Throughput Computing (HTC)**
- Operating Systems:
- Suse Linux Enterprise 10.0Sp2 on the hardware machines
- Scientific Linux 5 in virtualized worker nodes
- Virtualization technique: Kernel Virtual Machine (KVM)

Batch system: MAUI/Torque (PBS)

• Virtualization usage: Python (libvirt)

Cluster File System

deleted

Job runs on VM

disc

• New images are prepared for following jobs

• After job execution VM is destroyed and image is

• Computing job is piped to the VM via ssh

Realization of the virtualization system:

computing job inside the batch system

• Wrapper script (Prologue/Epilogue) around the actual

• Virtual machines are deployed on the hardware node

• Wrapper script starts VM and checks status of the VM

DESY Solution:

- Main goal: Bringing virtualization to Grid/gLite users
- Using the Sun Grid Engine (SGE) as back-end
- SGE support by the gLite Grid middleware
- lcg-CE (CE) as Grid front-end
- Operating Systems:
- Scientific Linux 5.1 on the hardware machines
- No middleware installed, runs SGE execd and shepherd
- SL 4.7 in virtualized worker nodes
- Has middleware installed, but no batch client

Implementation Details:

- Short prologue, epilogue and started scripts
- Basically run vmimagemanager
- DESY

Karlsruhe Institute of Technology

- Execution of job payload via ssh on VM
- Proof of principle implementation: 1 CE, 1 SGE master, 1 host, 2 VMs
- Stress test with > 100 jobs submitted simultaneously via WMS successful!
- No changes to CE, minor SGE configuration changes

Performance Considerations

• Typicall High Energy Physics (HEP) analyses showed a near native performance (3-6%) per core for Xen and KVM (with "virtio" paravirtualization support).

Educational usage of Virtualization

 Virtualization tutorials at GridKA School 2007, 2008 and 2009

 GridKA School computing environment partially virtualized to provide school service and handson machines

Conclusion

- Dynamic Virtualization:
 - Opportunistic use of computing resources
 - Avoids limitation of the compute environment (Operation System, architecture, worker node setup)

• Status:

Development and testing at KIT and DESY

DESY KIT - Institut für Experimentelle Kernphysik HELMHOLTZ KIT - Steinbuch Centre for Computing ASSOCIATION External Partner: HTW Berlin

Publications:

• V. Büge, H. Hessling, Y. Kemp, M. Kunze, O. Oberst, G. Quast, A. Scheurer, and O. Synge Integration of Virtualized Worker Nodes in Standard-Batch-Systems, CHEP09 Proceedings – to be published

• V. Büge, Virtualization of Grid Resources and Prospects of the Measurement of Z Boson Production in Association with Jets at the LHC, PhD Thesis – IEKP-KA/2008-18

• B. Klein, Application of Virtualization Techniques to Grid Resources and Reconstruction of Heavy Resonances Decaying to Quark and Gluon Pairs with the CMS Detector at the LHC, Diploma Thesis – IEKP-KA/2008-23

Ongoing Theses: O. Oberst (PhD Thesis), P. Klein (Diploma Thesis)