

Helmholtz Young Investigator Group — HU Berlin AG Phänomenologie der Elementarteilchenphysik Prof. Dr. Peter Uwer

General Information

Recent Group Activities

Location: Humboldt-Universität zu Berlin, Institut für Physik, AG Phänomenologie der Elementarteilchen, Newtonstr. 15, 12489 Berlin

Started: 11/01/2008

Personal

- Ph.D. student

- P.Uwer: Invited talk "Top quark theory", Hadron Collider Physics Symposium HCP2009, Evian 15-20 Nov 2009
- P. Uwer: Contribution to Startup-Workshop: Center of Computational Sciences Adlershof (CCSA), "Computational Aspects of Theoretical Particle Physics"
- P. Kant: Talk given at the 3rd Annual Workshop of the Helmholtz Alliance "Physics at the Terascale", DESY Hamburg, "Three-loop Corrections to the Mass of the Light Higgs Boson in the MSSM"
- P.Uwer: Contribution to: Expedition ins Universum Wissenschaft, Tage der Forschung 2009, "Alles Quark oder was die Welt der kleinsten Teilchen", September 2009
- P.Uwer: "Single-Top Workshop" DESY Hamburg, September 2009
- P.Uwer: Lecture on: "Monte Carlo Methods in High Energy Physics", Helmholtz International School - Workshop Calculations for Modern and Future Colliders", JINR, Dubna, Russia, July 2009.

Group Leader

- Peter Uwer
- Postdocs
 - Kouhei Hasegawa
 - Philipp Kant
 - Ulrich Langenfeld
- Benedikt Biedermann
- Diploma students
 - Ruth von Heusinger
 - Stefanie Hill
- U. Langenfeld: Talk given at the 3rd Annual Workshop of the Helmholtz Alliance "Physics at the Terascale", DESY Hamburg, "MSbar mass determination of the top quark"
- U. Langenfeld: Exercise, "alpha_s evolution", PDF School 2009, Hamburg, October 2009.
- P.Uwer: Invited talk, "Top quark pair production in association with an additional jet: Phenomenological results at next-to-leading order QCD", QCD2009, Berlin, October 2009.
- P.Uwer: CERN-TH-Institut: Top-quark physics, May/June 2009
- P.Uwer: Invited Talk: "Hadronic top quark pair production in association with a hard jet at next-to-leading order QCD" at DIS 2009, April 2009, Madrid
- P.Uwer: Lecture on: "Efficient Computing", DESY School CAPP: "Computer Algebra and Particle Physics", March 2009
- P.Uwer: CERN-TH-Institut: LHC2FC workshop (LHC for Future) Colliders), February 2009

Collaboration in Networks

- DFG Sonderforschungsbereich SFB-TR9 "Computergestützte Theoretische Teilchenphysik"
- DFG Graduiertenkolleg GK1504 "Masse, Spektrum, Symmetrie"
- Subnode of HepTools, Marie Curie Training Network of the EU

Activities in the Alliance

- Convener of the LHC-D-Alliance Top working group
- Contribution to CAPP school Research
 - \rightarrow first common projects emerging

Research Topics

- Radiative corrections for Tevatron, LHC and ILC
- Phenomenology of top-quarks
- Automation of one-loop corrections

Recent Scientific Results

- Improved predictions for the inclusive top-quark pair production
 - Boundstate effects in top-quark pair production

Approximation for the NNLO total cross section

• NLO corrections for W boson pair production in association with an additional jet

[Dittmaier, Kallweit, P.U. 09]

$pp \to W^+W^- + jet + X @ 14 TeV$			
$\mu = \mu_{\text{ren}} = \mu_{\text{fact}}$	$\sigma_{ m LO}[{ m pb}]$	$\sigma_{\rm NLO, excl}[pb]$	$\sigma_{\rm NLO,incl}[pb]$
$0.5 M_{ m W}$	27.17638(89)	22.216(15)	34.641(14)
$1 M_{ m W}$	23.97398(79)	22.606(12)	31.970(11)
$2 M_{ m W}$	21.26027(70)	22.5646(97)	29.7959(89)
$pp \rightarrow W^+ (\rightarrow \nu_e e^+) W^- (\rightarrow \mu^- \overline{\nu_{\mu}}) + jet + X @ 14 \text{ TeV}$			
$\mu = \mu_{\rm ren} = \mu_{\rm fact}$	$\sigma_{ m LO}[{ m fb}]$	$\sigma_{\rm NLO, excl}$ [fb]	$\sigma_{\rm NLO,incl}$ [fb]
$0.5 M_{ m W}$	118.849(11)	89.227(99)	148.826(68)
$1 M_{\rm W}$	104.9482(94)	93.789(76)	138.808(56)
$2 M_{ m W}$	93.1789(83)	95.493(60)	130.401(57)

→ Important background process for Higgs search \rightarrow Interesting signal process

Further Information

For further information please visit: www.physik.hu-berlin.de/pep

Or contact: Peter.Uwer@physik.hu-berlin.de