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Abstract

In HEP experiments the description of the trajectory of a charged particle is
obtained from a fit to measurements in tracking detectors. The parametrization
of the trajectory has to account for bending in the magnetic field, energy loss and
multiple scattering in the detector material. General broken lines define a track
model with proper description of multiple scattering leading to linear equations
with a special structure of the corresponding matrix allowing for a fast solution
with the computing time depending linearly on the number of measurements. The
calculation of the full covariance matrix along the trajectory enables the application
to track based alignment and calibration of large detectors with global methods.
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1 Introduction
The trajectory of a charged particle in a homogeneous magnetic field neglecting the
interactions with the detector material is described by a helix. In a global coordinate
system (x, y, z) with the magnetic field in z-direction it can be parametrized by the in-
verse momentum (times charge) q/p, an angle φ0 at and the distance d0 to the point of
closest approach in the (x, y)-plane, the dip angle λ to that plane and the offset z0 at the
point of closest approach. Energy loss in the detector material due to ionization or radi-
ation (for electrons) leads to a reduction of the momentum. Multiple scattering, mainly
due to Coulomb interaction with the electrons in the atoms, results in random changes
in direction and spatial position with expectation values of zero and variance depending
on the traversed material and the particle momentum. In addition the magnetic field is
usually homogeneous only in an approximation. Therefore more advanced track models
are required.

The effect of multiple scattering can be taken into account in different ways [1]. For
global methods it can be added to the measurement errors leading to a non diagonal
covariance matrix or explicitly fitted by scattering angles as additional track parame-
ters. In both cases this requires the inversion of a large matrix of order n (number of
measurements or number of scatterers) with computing time O(n3). The progressive
Kálmán filter [2] updating the track parameters for each additional measurement and
scatterer with a computing time O(n) has become the standard method for track fitting.

The broken lines model is a fast track refit adding the description of multiple scat-
tering to an initial trajectory and able to determine the covariance matrix of all track
parameters. This allows the usage as track model for track based alignment and cali-
bration with the global Millepede-II [3] algorithm. Corrections and covariance matrices
for the local track parameters can be determined with a computing time O(n).

The original formulation [4] describes the case of a tracking detector with a solenoidal
magnetic field and independent two-dimensional tracking in the bending and perpendic-
ular to the bending plane. It constructs the planar trajectories from the measurements
including the material around those as thick scatterers. In the presence of measurements
with components in both planes a single trajectory in three dimensions is required. In
the following this generalization and that for an arbitrary magnetic field is described for
a track with nmeas one- or two- dimensional independent measurements in nplane planes.

The application of a three-dimensional broken lines trajectory for the track-based
alignment of the CMS silicon tracker with Millepede-II [3] is described in [5].
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2 General broken lines

2.1 Seeding
The general broken lines are seeded by an initial trajectory. This can be the result of a fit
of the measurements (internal seeding) or a prediction from another part of the detector
(external seeding). The seeding track parameters at some reference point are used for
the propagation along the trajectory according to the magnetic field (and average energy
loss) to calculate residuals for the measurements and parameter transformation matrices.
If the track fit has to be iterated to account for nonlinear effects the initial trajectory
could be based on general broken lines itself.

2.2 Construction
At each measurement plane and each scatterer a local (orthonormal) coordinate system
(u1, u2, w) is defined.1 A local system moving with the track is the curvilinear frame
(x⊥, y⊥, z⊥) with z⊥ in track direction and x⊥ in the global (x, y)-plane. The material
between adjacent measurements planes is represented by up to two thin scatterers (zero
thickness) with the same mean and variance of the material distribution. A single thin
scatterer produces no direct spatial shifts but only a two-dimensional scattering angle
with variance θ20

(
1 0
0 1

)
[6]. The trajectory is constructed now from the thin scatterers

adding the measurements by interpolation of the enclosing scatterers. At each thin scat-
terer a two-dimensional offset u = (u1, u2) in the local frame is defined as fit parameter
of the track together with a common correction of the inverse momentum ∆q/p. To de-
fine the start and end of the trajectory the first and last measurement planes are added to
the sequence of scatterers. The number of scatterers nscat is between two (no material at
all) and 2nplane (thick scatterers between all planes) and the number of track parameters
to be fitted is npar = 2nscat + 1. Figure 1 illustrates this construction.

In the local frame a track can be described by the offset u, the slope u′ = ∂u
∂w

and
the inverse momentum q/p. With small distortions (∆q/p,∆u′,∆u) of the local track
parameters the offsets propagate like:

∆ui+1 =
∂ui+1

∂ui
∆ui +

∂ui+1

∂u′i
∆u′i +

∂ui+1

∂q/p
∆q/p = Ji∆ui + Si∆u′i + di∆q/p (1)

The derivatives J, S and d can be obtained from the curvilinear Jacobian and the
transformation of track parameters between the local and the curvilinear frame:

∂(q/p,u′,u)i+1

∂(q/p,u′,u)i
=

∂(q/p,u′,u)i+1

∂(q/p, λ, φ, x⊥, y⊥)i+1

∂(q/p, λ, φ, x⊥, y⊥)i+1

∂(q/p, λ, φ, x⊥, y⊥)i

∂(q/p, λ, φ, x⊥, y⊥)i
∂(q/p,u′,u)i

(2)
1A natural choice for the w-direction is perpendicular to the measurement plane for a measurement

and parallel to the track direction for a scatterer.
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Figure 1: Simple example in one plane, no magnetic field, measurements mi in planes
perpendicular to the track direction and homogeneous material distribution. Top: Resid-
uals versus initial trajectory along arc-length s. Bottom: Broken lines trajectory based
on thin scatterers with offsets u. The material between measurement i and i + 1 is de-
scribed with two thin scatterers at s = (si+1+si)/2±(si+1−si)/

√
12. First and last mea-

surement define additional offsets. The fit prediction uint,i for the measurementmi is ob-
tained by interpolation between the enclosing scatterers: uint,i = f(u2i−1, u2i), (uint,1 =
u1, uint,nmeas = unscat).
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The case of a constant magnetic field and momentum is described in [7]. Solving for
the slope correction yields:

∆u′i = S−1i (∆ui+1 − Ji∆ui − di∆q/p) (3)

With a triplet of three adjacent offsets (u−,u0,u+) two slopes can be determined at u0:

u′0(+) = W+(u+ − J+u0 − d+∆q/p),W+ = S−1+ (4a)

u′0(−) = W−(J−u0 − u− + d−∆q/p),W− = −S−1− (4b)

The kink k = u′0(+) − u′0(−) measures the change of slope due to multiple scattering at
the central scatterer (u0):

k = W+u+ − (W+J+ + W−J−)u0 + W−u− − (W+d+ + W−d−)∆q/p (5)

In case of a measurement instead of a scatterer at u0 there is no scattering and solving
the previous equation for uint = u0 with k ≡ 0 using N = (W+J+ +W−J−)−1 results
in the interpolation equation:

uint = N(W+u+ + W−u−)−N(W+d+ + W−d−)∆q/p (6)

Inserting uint for u0 into equation (4) yields:

u′int = W−J−NW+u+ + W+J+NW−u−

− (W−J−NW+d+ + W+J+NW−d−)∆q/p (7)

The track parameter variations in the local frame are ∆ploc = (∆q/p,u′,u) for a scat-
terer or ∆ploc = (∆q/p,u′int,uint) for a measurement.

2.3 Parameter estimation
The fit parameters x = (∆q/p,u1, ..,unscat) have to describe measurements, kinks from
multiple scattering and in case of external seeding the track parameters at the reference
point (scatterer or measurement). Each of those have an expectation, a variance and a
prediction depending linear on the fit parameters.

Measurement Using Puint = Hmx the expectation is the residuum m to the initial
trajectory: 〈Hmx〉 = m. The projection matrix into the measurement system is
P = ∂m

∂u
, where the covariance matrix Vm is diagonal.
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Kink In the case of an initial trajectory based on general broken lines there can be an
initial non-zero kink k0 and with k = Hkx the expectation is: 〈Hkx + k0〉 = 0.
For small kinks the variance Vk can be calculated by parameter transformation [7]
from the curvilinear to the local slopes which depends on the projections ci =
etrack · eui of the offset directions eui of the local frame onto the track direction
etrack and the variance of the multiple scattering angle:

Vk =
∂(u′1, u

′
2)

∂(x′⊥, y
′
⊥)

(
θ20 0
0 θ20

)[
∂(u′1, u

′
2)

∂(x′⊥, y
′
⊥)

]T
=

θ20
(1− c21 − c22)2

(
1− c22 c1c2
c1c2 1− c21

)
(8)

With a least one offset defined perpendicular to the track direction this is a diago-
nal matrix.

External seed The trajectory used is based on external track parameters with variance
Vs in the local frame at the reference point. On average no change of the track
parameters at that point is expected: 〈∆ploc〉 = 〈Hsx〉 = 0.

The fit parameters are determined by minimizing:

χ2(x) =
nmeas∑
i=1

(Hm,ix−mi)
T V−1m,i (Hm,ix−mi) (from measurements)

+
nscat−1∑
i=2

(Hk,ix + k0,i)
T V−1k,i (Hk,ix + k0,i) (from kinks)

+ (Hsx)T V−1s (Hsx) (from external seed) (9)

The minimization leads to a linear equation system Ax = b with x of size n = npar:

A =
nmeas∑
i=1

HT
m,iV

−1
m,iHm,i +

nscat−1∑
i=2

HT
k,iV

−1
k,iHk,i + HT

sV
−1
s Hs (10a)

b =
nmeas∑
i=1

HT
m,iV

−1
m,imi −

nscat−1∑
i=2

HT
k,iV

−1
k,ik0,i (10b)

As all uint,i and ∆ploc depend only on two and all ki on three adjacent offsets (and all
on ∆q/p), the offset part of all contributions (HTV−1H) to A are block diagonal ma-
trices with a single non-zero quadratic block of size nb ≤ 3 · dimension(u) = 6 and
the sum A is a bordered band matrix with border size b = 1 (q/p part) and band width
m = max(nb) − 1 = 5 (offset part): Akl = 0 for min(k, l) > b and abs(k − l) > m.
This special structure of the matrix allows the usage of the root-free Cholesky decom-
position Au = LDLT of the band part of the matrix into a diagonal matrix D and a
left unit triangular band matrix L. The solution x is calculated with O(n(m + b)2) and
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the full covariance matrix Vx = A−1 with O(n2(m + b)) operations in comparison
with simple inversion requiring O(n3). The matrix Vx is required by the global align-
ment and calibration algorithm Millepede-II [3]. For a sparse matrix the elements of
the inverse matrix inside the sparsity pattern can by calculated by special methods with-
out those outside that pattern [8]. This allows to obtain the bordered band part of Vx

with O(n(m + b)2) operations. The elements of that part are sufficient to calculate at
each measurement plane or scatterer the covariance matrix of the local track parameters
∆ploc and the error of the prediction (Hx) of the track model enabling the determina-
tion of the pulls (residuals normalized to error from measurement and prediction) for
the measurements and kinks.

In case the resulting track parameters are not small corrections as assumed in equa-
tion (1) the trajectory has to be iterated.

2.4 Comparision with Kálmán filter
Track fitting with the Kálmán filter algorithm [2] is a sequential procedure adding mea-
surements and scatterers (process noise) to the trajectory one at the time. The addition
of each measurement requires the inversion of several 5 × 5 matrices (C in equation
(12)). For n measurements about O(n) · 53 operations are performed. The general
broken lines can add several (n, between one and all) measurements with one fit using
O(npar) · (5 + 1)2 operations with npar = 5..(4 ·n+ 1) depending on the number of thin
scatterers. In a toy setup the performance for track refitting has been compared. Tracks
in a detector consisting of N planes with two independent measurements and thin scat-
terers coinciding with the measurement planes (simple model for a silicon tracker) or
one or two thin scatterers between adjacent planes have been simulated. In all cases
tested (N = 10, 30, 50) the refitting with general broken lines is about a factor 3–4
faster than with a Kálmán filter (filtering and smoothing).

In general only the covariance matrices for the track parameters at single points
are calculated by the Kálmán filter. For the global covariance matrix from all track
parameters of the trajectory required by global alignment and calibrations methods an
extension of the Kálmán filter is described in [9].

An externally seeded general broken lines trajectory with one measurement has only
one offset defined and the slope has to be used directly as fit parameter: x = ∆ploc,1 =
(∆q/p,u′1,u1). The solution of the linear equation system is:

x = A−1
[
HT
m,1V

−1
m,1m1

]
, A−1 =

[
V−1s + HT

m,1V
−1
m,1Hm,1

]−1
(11)

This is equivalent to the filtering step of a Kálmán filter in the weighted mean formalism
(equation (8b) in [2]):

xk = Ck

[(
Ck−1
k

)−1
xk−1k + Ht

kV
−1
k mk

]
, Ck =

[(
Ck−1
k

)−1
+ Ht

kV
−1
k Hk

]−1
(12)
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As the initial trajectory has been based on the track parameters from the external seed
the prediction xk−1k is zero, Ck corresponds to A−1, Ck−1

k to Vs and mk to m1.

3 Manual
This section describes version V01-16-01 of the C++, Python and FORTRAN im-
plementations of general broken lines provided by the statistics tools group of the
Helmholtz Alliance ’Physics at the Terascale’ [10]. Detailed descriptions are available
in the corresponding doxygen documentation.

3.1 Overview
The general broken lines are constructed from a sequence of points ordered by arc-
length on an initial trajectory provided for example by an external seed, a fit with a
simplified track model or the track finding. Each point may contain a measurement
or (thin) scatterer or both and can be queried after the fit for the local track parameter
corrections and covariance matrix. One point can be the reference point for an external
track seed. The user has to define at each point a local coordinate system and to provide
information about the measurements and scatterers in and the jacobians (transformation
matrices for track parameter variations) between those systems.

3.2 Special features
Additional parameters. Local (xl) or global (xg) parameters can be defined for the

track fit in addition to the usual track parameters. The local parameters are fitted
for each track, the global ones can be used to implement calibration or alignment
parameters to be determined by Millepede-II.

For example in a wire chamber the drift distance d ≈ (td− t0) · vd is a function of
the measured drift time td, the time t0 the particle passed through the detector and
the drift velocity vd. For each track a ∆t0 could be fitted as additional local track
parameter to check for example the consistency with the expected value (from
the event or the accelerator). A calibration parameter correction ∆vd could be
determined as global parameter from a larger set of tracks.

Diagonalization (C++, Python). Non-diagonal covariance matrices for measurements
Vm and kinks Vk are diagonalized internally.

Interface to Millepede-II [3]. The required binary data files can be produced directly
from the trajectories. As Millepede-II allows only for independent scalar mea-
surements the covariance matrices for measurements Vm and kinks Vk must be
diagonal (FORTRAN).
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Robust estimators. For outlier down-weighting the method of M-estimators can be
used. In this maximum likelihood ansatz not the (sum of) squares of normal-
ized residuals z are minimized, but iteratively a function ρ(z) giving less weight
ω(z) = ∂ρ(z)

∂z
/z to large values of the residuals. Implemented are the Cauchy,

Huber and Tukey (’bisquare’) function (with asymptotic effciency2 of 95% on a
unit normal distribution N(z)) [11]:

χ2 (ρ(z) = 1
2z

2) Cauchy Huber Tukey
ω(z) for |z| ≤ c 1 [1 + (z/c)2]−1 1 [1− (z/c)2]2

ω(z) for |z| > c 1 [1 + (z/c)2]−1 c/|z| 0

2
∫ +∞
−∞ ρ(z)N(z)dz 1 0.8228 0.9326 0.8737

c 2.3849 1.3450 4.6851

3.3 C++ implementation
Matrices are implemented with ROOT [12]. User input or output is in the form of
TMatrices. Internally SMatrices are used for fixes sized and simple matrices based
on std::vector<> for variable sized matrices. Besides simple trajectories describing the
path of a single particle composed trajectories are supported. These are constructed from
the trajectories of multiple particles and some external parameters (like those describing
a decay) and the transformations at the first points from the external to the local track
parameters.

Listed below is the calling sequence, calls to ’()’ are mandatory, to ’[]’ optionally.

(1) Create list of points on initial trajectory:

std::vector<GblPoint> list

(2) For all points on initial trajectory:

(2.1) Create point and add appropriate attributes:

(2.1.1) Create point (with jacobian from previous point):
point = gbl::GblPoint(jacobian)

[2.1.2] Add measurement:
point.addMeasurement(..)

[2.1.2.1] Add additional local parameters:
point.addLocals(..)

[2.1.2.1] Add additional global parameters:
point.addGlobals(..)

2Minimum possible variance for an unbiased estimator divided by its actual variance.
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[2.1.3] Add scatterer:
point.addScatterer(..)

(2.2) Add point (ordered by arc length) to list:
list.push_back(point)

(3) Create (simple) trajectory from list of points:

traj = gbl::GblTrajectory(list)

Optionally with external seed:

traj = gbl::GblTrajectory(list,seed)

[4] Check validity of trajectory:

if (not traj.isValid()) .. //abort

(5) Fit trajectory, return error code, get Chi2, Ndf (and weight lost by M-estimators):

ierr = traj.fit(..)

[6] For any point on initial trajectory:

[6.1] Get corrections and covariance matrix for track parameters:
[..] = traj.getResults(label)

[6.2] Get residuals for measurement:
[..] = traj.getMeasResults(label)

[6.3] Get (kink) residuals for scatterer.:
[..] = traj.getScatResults(label)

[7] Write trajectory to MP binary file:

traj.milleOut(..)

3.4 Python implementation
Requires at least Python version 2.5 and the ’numpy’ module. Implements a module
’gblpy’.

Listed below is the calling sequence, calls to ’()’ are mandatory, to ’[]’ optionally.

(1) Create trajectory:

traj = GblTrajectory()

(2) For all points on initial trajectory:

(2.1) Create point and add appropriate attributes:

10
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(2.1.1) Create point (with jacobian from previous point):
point = GblPoint(jacobian)

[2.1.2] Add measurement:
point.addMeasurement(..)

[2.1.2.1] Add additional local parameters:
point.addLocals(..)

[2.1.2.1] Add additional global parameters:
point.addGlobals(..)

[2.1.3] Add scatterer:
point.addScatterer(..)

(2.2) Add point (ordered by arc length) to trajectory, get label of point:
label = traj.addPoint(point)

[3] Add external seed:

traj.addExternalSeed(..)

(4) Fit trajectory, return error code, get Chi2, Ndf (and weight lost by M-estimators):

[..] = traj.fit()

[5] For any point on initial trajectory:

[5.1] Get corrections and covariance matrix for track parameters:
[..] = traj.getResults(label)

[6] Write trajectory to MP binary file:

traj.milleOut(..)

3.5 Fortran implementation
With nadd additional local parameters at each point NP = 5 + nadd track parameter
corrections (∆ploc,∆xl) are determined. The corresponding covariance matrix is used
in symmetric storage mode. Skipping the lower triangular part of the symmetric matrix
it is stored in a vector of size NP2 = (NP + 1) · NP/2 with element (i, j) (i ≥ j) at
position i · (i− 1)/2 + j.

Listed below is the calling sequence, calls to ’()’ are mandatory, to ’[]’ optionally.

(1) Initialize fit.

CALL GBLINI(LPRINT)

LPRINT: Print level, 0 = none, 1 = minimal, 2 = more
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In case the two offset directions (u1, u2) are not correlated by any measurement or
jacobian at any point the fit can be reduced to a projection into one of the (ui, w)
planes:

CALL GBLINP(LPRINT,ICOORD)

LPRINT: Print level, 0 = none, 1 = minimal, 2 = more

ICOORD: Coordinate for projection (1 or 2)

(2) Add point. Points have to be added in correct order (increasing or decreasing arc-
length).

CALL GBLADP(IRET)

IRET: Returned. Label (=number) of point added (>0) or error (=0).

[3] Add measurement to current point.

CALL GBLADM(PROJ,RES,PREC)

PROJ(2,2): Projection matrix P = ∂m
∂u

of measurement directions into local
system (double precision)

RES(2) : Residuals m to initial trajectory

PREC(2) : Diagonal of inverse covariance matrix V−1m

[3a] Add local derivatives to current measurement.

CALL GBLADL(NDER,DER,IRET)

NDER : Number of local derivatives

DER(2,*): Local derivatives ∂m/∂xl

IRET : Returned. Number of non zero derivatives added

[3a] Add global derivatives to current measurement.

CALL GBLADG(NDER,LDER,DER,IRET)

NDER : Number of global derivatives

LDER(*) : Labels for global derivatives

DER(2,*): Global derivatives ∂m/∂xg

IRET : Returned. Number of non zero derivatives added

[4] Add (thin) scatterer to current point.

CALL GBLADS(RES,PREC)
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RES(2) : Values for initial kinks k0 (non-zero in case of iterating)

PREC(2) : Diagonal of inverse covariance matrix of kinks V−1k

[5] Dump trajectory definition.

CALL GBLDMP

[6] Add (inverse covariance matrix from) external seed to reference point.

CALL GBLADX(IPOINT,DPRC)

IPOINT : Reference point (signed, <0: side towards previous point, >0:
side towards next point)

DPRC(NP2): Precision matrix V−1s from external seed (symmetric storage mode,
double precision)

(7) For all points inquire and provide jacobians.

CALL GBLQRJ(IPOINT,IPREV,INEXT)

IPOINT: Point to query for jacobians

IPREV : Returned. Previous point, jacobian from IPOINT to IPREV needed

INEXT : Returned. Next point, jacobian from IPOINT to INEXT needed (or -1
for illegal IPOINT)

CALL GBLADJ(IPOINT,AJACP,AJACN)

IPOINT : Point to add jacobians to

AJACP(5,5): Jacobian to previous point

AJACN(5,5): Jacobian to next point (double precision)

[8] Write Millepede-II record (to FORTRAN unit 51).

CALL GBLMP2(IRET)

IRET: Returned. Number of MillePede measurements in record.

(9) Perform fit.

CALL GBLFIT(CDW,MRANK,NP,NDF,CHI2,WLS)

CDW : String defining iterations for outlier down-weighting, one character per
iteration (C: Cauchy, H: Huber, T: Tukey)

MRANK: Returned. Rank of trajectory (5: curved track in space, 4: straight
track in space, 3: curved track in a plane, 2: straight track in a plane else: fit
failed)
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NP : Returned. Number of track parameters at each point

NDF : Returned. Number of degrees of freedom

CHI2 : Returned. χ2 value at minimum (divided by 2
∫ +∞
−∞ ρ(z)N(z)dz)

WLS : Returned. Weight lost by down-weighting (
∑

i(1 − ω(zi)) over all
measurements and kinks)

[10] Get track parameter corrections with covariance matrix at point.

CALL GBLRES(IPOINT,DPAR,DCOV)

IPOINT : Point (signed, <0: side towards previous point, >0: side towards
next point)

DPAR(NP) : Returned. Corrections (double precision)

DCOV(NP2): Returned. Covariance matrix (symmetric storage mode, double
precision)

3.6 Fortran example
The example main program GBLTST demonstrates the usage of this implementation for
a simplified setup. The detector consists out of N = 10 measurement planes with single
thin scatterers between consecutive planes in a constant magnetic field (0, 0, Bz). For
the local coordinate system and track parameters different choices are available:

1. Curvilinear track parameters (q/p, λ, φ, x⊥, y⊥) using the track angles instead of
local slopes.

2. Slopes and offsets (q/p, x′⊥, y
′
⊥, x⊥, y⊥) in the curvilinear frame.

3. Slopes and offsets (q/p,u′,u) in the frame with the u1 direction in the bending
plane and perpendicular to the track and u2 in the direction of the magnetic field.

The jacobians are approximated for the limit q/p → 0. In this case they are simple
quadratic functions of the arc-length difference ∆s = si+1 − si between two points, for
example:

∂(q/p, x′⊥, y
′
⊥, x⊥, y⊥)i+1

∂(q/p, x′⊥, y
′
⊥, x⊥, y⊥)i

=


1 0 0 0 0

−Bz∆s cosλ 1 0 0 0
0 0 1 0 0

−Bz
1
2
∆s2 cosλ ∆s 0 1 0
0 0 ∆s 0 1

 (13)
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4 Summary
A trajectory based on General Broken Lines is a track refit to add the description of mul-
tiple scattering to an initial trajectory based on the propagation in a magnetic field (and
average energy loss). The initial trajectory can be the result of a fit of the measurements
(internal seed) or a prediction from another detector part (external seed). It is con-
structed from a sequence of (pairs of) thin scatterers describing the multiple scattering
in the material between adjacent measurement planes. Predictions for the measurements
are obtained by interpolation between the enclosing scatterers and triplets of adjacent
scatterers define kink angles with variance according to the material of the central scat-
terer. The required propagation (on the initial trajectory) from a measurement plane
or scatterer to the previous and next scatterer is using locally a linearized track model.
The matrix of the resulting linear equations system is a bordered band matrix allowing
for a fast solution by a root-free Cholesky decomposition in a time proportional to the
number of measurements. At all scatterers and measurement planes corrections for the
local track parameters are determined. The corresponding covariance matrices and the
pulls for the measurements and kinks require only the calculation of the bordered band
part of the inverse matrix. For a simulated setup the track refitting is a factor 3–4 faster
than with Kálmán filtering and smoothing.

A General Broken Lines fit with external seed and one (additional) measurement is
equivalent to the filtering step of the track fit with a Kálmán filter.

As the track refit can provide the complete covariance matrix of all track parameters
General Broken Lines are well suited as track model for alignment and calibration with
Millepede-II [3].
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