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1. Introduction 
 
The goal of my project is to determine some of the parameters in the unintegrated 
Gluon Density Function (uGDF). Therefore, I´m looking at processes in electron-
proton scattering where the scattered quark emits a gluon, which splits up into a 
quark-antiquark-pair, these quarks then form the jets which are considered (if there 
are more than two jets, the two with the highest transverse momentum are picked). 
The uGDF depends on the transverse momentum of the gluon; the transverse 
momentum is related to the azimuthal angle between the two jets, which is 
measured. My fit of the uGDF uses these dijet data in combination with an 
interpolating fitting method. 
Parton Density Functions like the uGDF are important for analyzing the structure of 
the proton and for studying some properties of Quantum Cromodynamics (QCD), like 
for example the energy dependence of the strong coupling constant . 
 
 
 
2. Theoretical and experimental background 
 
2.1. HERA and the H1 detector 
 
HERA, which belongs to DESY in Hamburg, is a circular electron-proton collider 
which was operating until 2007. It can be used like a huge microscope to have a look 
inside the proton. HERA hosted four experiments: H1, ZEUS, HERMES and HERA-
B.   
H1 mainly analyses the structure of the proton and QCD. The H1 detector is shown 
below. 
 

 
Figure 1: H1 detector 
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2.2. Deep inelastic electron-proton scattering (DIS) 

 
In DIS events, like at HERA, an electron and a proton collide head-on. In the simplest 
case, the electron interacts with one of the partons (which means quarks and gluons) 
of the proton by exchanging a photon (or sometimes a  or a , but these cases 
can be neglected in the studied kinematic region). After that, the scattered parton 
flies into a different direction as the proton remnant. The scattered parton emits a 
cascade of gluons and other quarks, which finally form hadrons, due to the fact that 
no single colored particle can exist. The result are the so-called jets. There are also 
more complicated possibilities of a scattering event: For example, the parton can first 
emit a gluon, which splits up into a quark-antiquark-pair, from which one quark then 
interacts with the photon. 
Here is an example of a scattering event: 
 
 

 
 

Figure 2: DIS event 
 
 
 
To describe such events, one needs some variables like: 
 
                   with   
 
                 

 
(p: four-momentum, index e: electron, index e’: scattered electron, index p: proton) 
 
Q² can be interpreted as the resolution with which one can look inside the proton; x is 
the fraction of the proton momentum which is carried by the scattering particle. In the 
lowest order reaction, where the electron interacts directly with a quark from the 
inside of the proton by exchanging a photon, x is the same than . 
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2.3. Parton Density Functions (PDFs) and the cross-section 
 
A fundamental value for the analysis of DIS events is the cross-section, which is 
given by the following formula: 
 

 
 
α is the electromagnetic coupling constant, y is the inelasticity variable of the event, 

and  are the structure functions of the proton, which depend on the PDFs.  
For example,  is given by: 
 

 
 
The sum runs over all kinds of partons,  is the charge of a parton i and  is 
the corresponding PDF. 
The PDF can be interpreted as the probability of finding a parton i carrying a fraction 
x of the proton momentum. As one can see, the PDFs play an important role in the 
description of scattering events and the proton structure. 
 
 
2.4. Evolution Equations 
 
Evolution Equations describe how a parton splits into two partons, one of them also 
splits and so on. These processes form parton ladders as shown below: 
 

 
 

Figure 3: parton ladder 
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I will not go into the theoretical details, but the practical use of the Evolution 
Equations is that one can get rid of the Q² dependence in the PDFs. Once you know 
a PDF at one value of Q², you can use an Evolution Equation to determine it on every 
other Q². 
One example of an Evolution Equation is the DGLAP- scheme: 
 
 

 
 
where   is the strong coupling constant and  gives the probability for a parton i to 
radiate a parton j.  
 
 
 
 
2.5. The unintegrated Gluon Density Function 
 
 
The formula of the starting distribution of the uGDF is: 
 

 
 
Unintegrated here means that it depends on the transverse momentum  of the 
gluon. N is the normalization, B (or sometimes called ) gives the behavior of the 
function at small values of x, C gives the large x behavior,  and  determine the 
shape of the  distribution.  
 
The parameters N, B, C,  and  can’t be calculated theoretically, they need to be 
fitted experimentally. In the case of my project, C is kept fixed at 4 because the data 
is assumed not to be sensitive to C, since the measurement was performed at low x.  
There were several attempts to determine these parameters. One recent result from 
Albert Knutsson was (see [3]): 
 
N= 0.47, B= 0.08, = 0.5, = 3.0 
 
 
 
3. The data 
 
The uGDF is here fitted to dijet data which was collected by H1 in the years 1999 and 
2000. DIS events with  and at least two jets with a transverse 
energy larger than 5 GeV are taken. For such events, the cross-section is measured 
as a function of . 
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The measurement contains scattering events like the one shown in figure 2. There, a 
gluon splits up into a quark and an antiquark, which produce two jets, one from the 
quark and the other from the antiquark (involving the interaction with the gluon). 
Because of the conservation of momentum, the azimuthal angle between these two 
jets depends on the transverse momentum  of the gluon. 
 

 
 

Figure 4: Dependence of  on  
 
 

Therefore, the measurement of    is sensitive to the  distribution ( here,  is the 
cross-section, not the parameter in the uGDF). 
 
 
 
4. The method 
 
In the fitting procedure, in general, one compares the data to predictions given by a 
monte- carlo generator (I used CASCADE). The predictions are made for several 
values of the parameters. To see which value of the parameters gives the best 
predictions, one looks at the value of , which is defined as: 
 

 
 
(Y: observable, MC: monte-carlo prediction, exp: experimental data, : error of ) 
The lower , the better is the prediction. So one searches for the minimum of  to 
get the best description of the data. 
 
In my fitting method, the idea is the following procedure: First I make a rough -scan 
for each parameter, while the other parameters are kept fixed at the expected values 
(see 2.5). That means that I choose some values in a rather large region and search 
for the minimum of . After the scans, I choose some values around these minima, 
which altogether build the grid. The grid is the combination of all 
  points ( : number of the chosen values for parameter i). 
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 Then I use a program to fit a polynomial to this grid: 
 

 
 
( : parameters (in this case N, B,  and ), n is the number of parameters (here: 4) , 
A, … are fitted by the program). In the last step, the parameters  are 
determined by fitting all the polynomials to data simultaneously.  
 
 
 
5. Results 
 
First, I was making a rough -scan for each parameter, while the other parameters 
were kept fixed at the expected values from the result I mentioned above (N= 0.47, 
B= 0.08, = 0.5, = 3.0). 
 
These are the resulting scans for N and B: 
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In both scans, one can see a clear minimum, which is at the expected value (for N, 
it’s around 0.47 and for B, it’s around 0.08). But these minima don’t have to be the 
same than my final results (and as one will see, they aren’t), because the other 
parameters are fixed at values based on another result and all the parameters are 
correlated. 
 
For  and , the scans are the following: 
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In both scans, there isn’t a minimum, but  is getting smaller and smaller for larger 
values of  and . 
 
 
One thing I especially realized while making the scan for  is the importance of a -
cut. For all my following results, I also used a - cut (at . This means, that 
the monte- carlo generator only calculates events where the transverse momentum 



10 
 

of the jets is larger than . Therefore, one gets more statistics and can avoid 
errors due to statistical fluctuations. 
 
This was my -scan for without a - cut: 
 

 
 
 

Here one can see a lot of statistical fluctuations, especially at low values of . So one 
can’t get any information from such a scan. 
 
My result of the -scan is surprising, because it is quite different than the one Albert 
received. This is Alberts -scan: 
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Here,  is getting larger for larger values of , so it goes in the opposite direction 
than in my scan, and it has a minimum around 0.5.  
 
 
After these scans, I was building up and analyzing the grid. I started with few points 
in 2 dimensions (just N and B, the other parameters were kept fixed at one value), 
analyzed this grid, added some new points in the interesting regions and also added 
some points in sigma later to get a 3 dimensional grid. Building and analyzing the 
grids always took at lot of time, so unfortunately I didn´t have the time to build up a 4 
dimensional grid to analyze mu also and to add more points in sigma. 
 
My final grid was the following: 
 

N 0.04 0.1 0.2 0.36 0.47 0.54 0.7  
B - 0.2 - 0.05 0.08 0.15 0.3 0.45 0.6 0.75 

 1.0 2.0 3.0      
 3.0        

  
 
By analyzing this grid, the results weren’t consistent: When I analyzed all different 
regions of  together, I got another result than when I analyzed all these regions 
separately. The result should be the same; I don´t know the exact reason for this 
inconsistency. 
 
The following table shows the results I obtained for all the different regions of  
separately and for all combinations of them: 
 

 N B /ndf 
1 0.44 ± 0.09 0.21 ± 0.06 3 ± 1.65 0.41 
2 0.28 ± 0.07 0.31 ± 0.09 3 ± 1.43 1.43 
3 0.47 ± 0.1 0.05 ± 0.07 3 ± 1.56 0.7 

1 and 2 0.27 ± 0.06 0.35 ± 0.08 2.45 ± 0.7 3.17 
1 and 3 0.1 ± 0.02 0.70 ± 0.06 1 ± 0.19 11.1 
2 and 3 0.15 ± 0.04 0.50 ± 0.1 1.95 ± 0.7 7.0 

1, 2 and 3 0.11 ± 0.02 0.65 ± 0.07 1.03 ± 1.75 7.51 
 

 
 

 
 
So I had two candidates for the result, which means for the values of the parameters 
that describe my data best: One of them was the result for fitting all regions together, 
the other was the average of the results I obtained by fitting every region separately 
(average of the first three lines of the table). These two were: 
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 Result for fitting all regions 
of  together 

Result for fitting all regions 
of  separately 

N 0.11 0.4 
B 0.65 0.2 

 1.0 3.0 
 3.0 3.0 

 
 
 
Then I calculated  for both of these candidates, and I found out that the second 
one describes the data better (  = 185.8) than the first one ( = 347.7). 
 
So my final result for the best fit of the parameters is: 
 

N = 0.4 
B = 0.2 

 = 3.0 
 = 3.0 

 
But these values aren´t very exact because N and B are an average, for sigma I 
didn’t have many points in the grid and my result for mu is just obtained from the 
chi^2 scan and not from a 4 dimensional grid.  
For sigma and mu, one can also use larger values than 3.0, because one can see in 
the chi^2 scans that the curves flatten out for large values of sigma and mu. 
 
With these values, the uGDF looks like this (new fit means my actual one): 
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I was also creating a graphical comparison of my fit with the data and with one older 
fit, which is called A0 (there, the values of the parameters are: B = 0.0, σ = 1.0, µ = 
0.0, this is also used in the previous plot): 
 
 

 
 
 
The black line is the data, the blue, dotted line is the older fit A0 and the red, dashed 
line is my new fit.  
In this plot, one can see that my new fit is really an improvement, because is 
describes the data better than the old one in almost all the bins. 
 
 
Finally I was making some final chi^2 scans for my new fit. In the ones shown above, 
I kept the other parameters fixed at the values  N= 0.47, B= 0.08, = 0.5, = 3.0 
while scanning one parameter, in the scans shown now I kept them fixed at  
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N= 0.4, B= 0.2, = 3.0, = 3.0, which is my new fit. (I didn’t scan mu again because I 
didn’t fit it in a 4 dimensional grid). 
 
These are the scans for N and B: 
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One can see a clear minimum at N = 0.4 for the N-scan and at B = 0.2 for the B-scan. 
That confirms my obtained results, because it shows that my obtained values for N 
and B really give the lowest chi^2, which means the best description of the data. 
 
 
For sigma, the scan is the following: 
 

 
 

As in the other chi^2 scan for sigma, which I made before the grid, one can’t see a 
minimum, but the curve flattens out for large values of sigma. So this scan is also 
consistent with the results. 

 
 
 
 
 

6. Summary 
 
My obtained fit for the parameters in the unintegrated Gluon Density Function is the 
following: 
 

N = 0.4 
B = 0.2 

                   = 3.0 (or larger) 
                   = 3.0 (or larger) 

 
N, B and σ are obtained from analyzing a 3 dimensional grid, µ just comes from a 
rough chi^2 scan. 
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There were some inconsistencies during the fitting procedure, but these values 
describe the dijet-data they were fitted to well.  
 
For further projects, it would be useful to take a larger grid for the fit, which contains 
also different values for µ, more points for σ and more points at higher values of B. 
Maybe that could solve the inconsistency and give a fit which is more exact. 
It would also be interesting to analyze how well this fit can describe other data or for 
example the proton structure function . 
 
Compared to other results, where B was 0.08 (Alberts result) or even 0.0 (A0), my fit 
prefers a steeper rising and higher values of the uGDF if one goes to smaller and 
smaller values of x.  
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